
DataDiff: User-Interpretable Data Transformation Summaries
for Collaborative Data Analysis

Gunce Su Yilmaz
University of Chicago

Chicago, Illinois

Tana Wattanawaroon
University of Illinois

Urbana-Champaign, Illinois

Liqi Xu
University of Illinois

Urbana-Champaign, Illinois

Abhishek Nigam
University of Illinois

Urbana-Champaign, Illinois

Aaron J. Elmore
University of Chicago

Chicago, Illinois

Aditya Parameswaran
University of Illinois

Urbana-Champaign, Illinois

ABSTRACT
Interest in collaborative dataset versioning has emerged due to com-
plex, ad-hoc, and collaborative nature of data science, and the need
to record and reason about data at various stages of pre-processing,
cleaning, and analysis. To support effective collaborative dataset
versioning, one critical operation is differentiation: to succinctly
describe what has changed from one dataset to the next. Differ-
entiation, or diffing, allows users to understand changes between
two versions, to better understand the evolution process, or to sup-
port effective merging or conflict detection across versions. We
demonstrate DataDiff, a practical and concise data-diff tool that
provides human-interpretable explanations of changes between
datasets without reliance on the operations that led to the changes.

CCS CONCEPTS
• Information systems→ Data cleaning;

KEYWORDS
versioning, differentiation
ACM Reference Format:
Gunce Su Yilmaz, Tana Wattanawaroon, Liqi Xu, Abhishek Nigam, Aaron J.
Elmore, andAditya Parameswaran. 2018.DataDiff: User-Interpretable Data
Transformation Summaries for Collaborative Data Analysis. In SIGMOD’18:
2018 International Conference on Management of Data, June 10–15, 2018,
Houston, TX, USA. ACM, New York, NY, USA, Article 4, 5 pages. https:
//doi.org/10.1145/3183713.3193564

1 INTRODUCTION
Due to an increasing demand for mechanisms for managing collab-
orative data preparation, data analytics, and data science, recent
systems propose dataset versioning as a first-class primitive to
support concurrent long-term isolated data science sessions for
users to clean, wrangle, and integrate datasets [9, 13, 14]. Similar
to versioning found in source-code version control systems (i.e. git,
mercurial), dataset versioning allows users to create an isolated

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3193564

logical copy of the dataset, called a branch, that they can explicitly
later share back into the system, or update their branch to reflect
changes made in other branches. A branch is made up of one or
more commits, each of which is a collection of operations—much
like a long-lived transaction. Unlike temporal databases [7, 15] or
snapshot isolation, dataset versioning allows commits to be created
by either modifying a previous commit, or by merging multiple
commits into a single new commit.

For users to understand the changes made in a branch and to
merge branches, an efficient differentiation, or diff operation is
critical. For a diff operation, source-code version control systems
simply list out the lines that have changed between versions. Then,
while merging, these version control systems utilize the results of
the diff operation and automate the merge wherever possible, while
also listing out line-level conflicts where two parent commits both
have modified the same line of code. If any conflict is found, the
user performing the merge must manually reconcile those conflicts
by selectively merging a file that has annotated the areas of conflict.

While such a diff operation and manual conflict resolution may
work for source-code version control, such an approach is not ten-
able for dataset versioning for the following reasons. First, dataset
operations often result in a high number of modifications, and
thus an increased number of conflicts as compared to source-code
version control systems. Single line commands, such as updates
or deletes with non-selective predicates or alter table statements,
can modify an entire table, and cannot be succinctly described as
line-by-line edits. Such broad modifications are common in data
analysis for tasks such as normalizing fields, splitting attributes,
interpolating values, and projecting down a dataset. Second, the
intention or impact of a change can often be inferred with source
code as the developer can interpret the logic of the change. With
dataset versioning this intention may not always be present, as the
user may only see the modified records and not necessarily the
updates that created the modification. This is due to some dataset
versioning systems supporting UDFs or via updates outside of the
system. Third, the translation of line-level conflicts or diffs equates
to record level conflicts for dataset versioning. Since modifications
and reads can occur at the attribute level, this granularity of conflicts
may be too coarse for both detecting conflicts and helping users
understanding where conflicts exist. Lastly, and outside the scope
of this demo, the definitions of a conflict with dataset versioning
can expand beyond write-write conflicts.

Therefore to support the effective branching, an efficient data diff
tool must exist to aid the user in understanding how two versions

https://doi.org/10.1145/3183713.3193564
https://doi.org/10.1145/3183713.3193564
https://doi.org/10.1145/3183713.3193564

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Gunce Su Yilmaz et al.

differ from each other by examining the data only. Such a tool is
useful for understanding how versions evolve and for understand-
ing conflicts between versions. To understand how data diff can be
implemented, one must understand how updates can be applied to
dataset versioning systems. Some dataset versioning systems, such
as Decibel [18], only allow for modifications to happen through the
system DSL or DML. Here, provenance could be used to help track
the operations that lead to a change. However, other systems such
as OrpheusDB [14] allow for users to export a dataset to a shared
format (i.e. CSV) and reimport the dataset into a child commit. This
allows for external tools (i.e. Pandas) to modify the dataset and
result in diff tools only to rely on data-only based solutions. In this
demo, we propose DataDiff, a system to support concise diffing
between versions without access to the underlying operations. We
leverage recent development of theory [5] to develop the underly-
ing algorithms, while also developing a user interface with the goal
of providing concise explanations of complex changes efficiently.

2 BACKGROUND
While a large body of related work exists, we limit our discussion
here to versioning for databases and synthesizing view definitions.
Data Versioning. Temporal databases support versioning oper-
ations only for a linear chain of versions [17, 21], as opposed
to branching and merging that are more crucial in collaborative
data science. DB2 [22] and Teradata [8] supports time-travel func-
tionality by developing temporal capabilities on top of traditional
databases. Other research [17, 21] focuses on branched temporal
databases, allowing multiple linear chains of versions, but without
supporting arbitrary branching and merging. Jiang et al. [16] de-
scribe a new index for tree-oriented versioned data without merges.

git and svn are version control systems designed for source
code; thus they cannot scale to large datasets and have limited
querying capabilities [18]. Noms [4] extends git version control
functions and supports decentralized version control over large
structured datasets. LiquiBase [3] manages, keeps track of and re-
stores database schema changes. DBV [2] logs the schema change
operations made in one branch and is able to reapply these opera-
tions to datasets in other branches.

Related projects explore versioning as a first class primitive [9,
11, 13, 18], allowing the management of branched datasets, while
supporting querying across versions and data, but none of these
systems provide any rich functionality for explaining diffs between
versions other than showing users the records that are in conflict,
and do not provide any support for complex conflict resolution.
View Synthesis. DataDiff is related to view synthesis, wherein
the goal is to find a view definition that succinctly describes one data-
base instance as a view of another instance [12, 23]. Recent work
has also extended view definitions to a broader class of queries and
interfaces [6, 10, 19, 24]. The key difference between DataDiff and
view synthesis is that since DataDiff allows modification of data,
which is non-commutative even for simple modifications, the prob-
lem becomes NP-Hard even for a finite number of attributes [5].

3 THE DATA-DIFF PROBLEM AND SOLUTION
DataDiff takes as input two datasets, the origin dataset and the des-
tination dataset, and provides a succinct description of the changes

deleted cols added cols modified cols primary key

derived added

Completed Schema Mapping

row ID subroutine

modified rows added rows deleted rows

single
mod/col

multiple
mod/col

single
predicates

multi-col
predicates

Final Result

schema level
record level

D1 D2 Datasets

Figure 1: DataDiffWorkflow

between the two datasets in the form of a sequence of operations
that be used to transform the origin dataset into the destination
dataset. Operations can affect:
• the schema: columns added, removed, or renamed, and
• the data: tuples added, removed, or has values changed.

We focus on SQL-style changes for the purpose of displaying the
results to the user. (Of course, the changes made to the dataset could
be made within a database or outside of it, and therefore need not
conform to an SQL query, as we described in Section 1.) The schema
may be modified with ALTER TABLE commands. Adding a tuple can
be done with INSERT, whereas deleting tuples or modifying values
can be done in batches using DELETE and UPDATE, with the change
affecting all tuples thatmatch the specified WHERE conditional clause.
Hence, it is possible that a change affecting the majority of tuples
is described succinctly using only one command.

Like present dataset versioning tools such as OrpheusDB [14]
(which we build on) and Decibel [18], we focus on structured, rela-
tional datasets. We also assume that the datasets share a primary
key. Without a primary key, it can be difficult to determine whether
a new tuple in the destination dataset is entirely new or actually
modified from another tuple in the origin dataset.
Complexity Results. In a companion paper, we formally define
the problem of identifying a succinct data modification script, de-
termining the complexity and tractability of the problem under
different settings of attribute characteristics (read, write), possible
WHERE conditions (equality, at-most, range), and update modifiers
(assignment, increment, etc.) [5]. Even when restricted to single-
attribute conditions, this problem is intractable. For example, find-
ing the shortest sequence of updates with range conditions and
increment modifiers is NP-Hard. When the condition spans mul-
tiple attributes, the problem is hard even for conditions as simple
as equality. It can be shown that the problem is a generalization of
the view synthesis problem (Section 2), and is therefore harder. The
difficulty arises from the need to break down compound operations,
and sometimes the non-commutativity of the operations.

Note, that the DataDiff problem is much more general than
the problem of finding a succinct data modification script—which
tries to characterize how a specific set of tuples have been modified,

DataDiff SIGMOD’18, June 10–15, 2018, Houston, TX, USA

when there is no change to the schema. In addition to tuple mod-
ifications, in the DataDiff problem, tuples could be deleted—for
which the work on view synthesis as described in Section 2 provides
partial solutions. Finally, DataDiff could also have attributes being
modified, added, deleted, or renamed, and tuples being added. Due
to all of these reasons, DataDiff is a substantially harder problem,
and developing a system for DataDiff that provides reasonable
results in interactive time is a challenge.
System Description. We implement DataDiff as a module in
OrpheusDB [14], a “bolt-on” versioning layer for PostgreSQL. Or-
pheusDB supports versioning, by creating mappings of versions to
tuples through non-atomic data types. Versions are materialized
to a table or CSV from partitioned relations that contain records
from one or more versions. Versioning metadata is stored in aux-
iliary data structures. When a user invokes a diff in OrpheusDB,
the system calls the DataDiff submodule to derive a concise diff
explanation. Figure 1 highlights the workflow to determine both
the schema level and the data level changes. This workflow output
also matches the diff UI demonstrated in Section 4. The list below
summarizes the changes that DataDiff currently supports:
1. Detects column differences between datasets and prompts
the user to confirm differences. Given an origin dataset with
known primary key column and a destination dataset, DataDiff
predicts the column mappings from origin to destination, and the
primary key column of the destination. It designates a null-to-
column mapping for added columns and a column-to-null mapping
for removed columns. DataDiff also provides a clear interface for
the user to evaluate and modify these mappings.
2. Detects deleted rows via selection queries. Once the column
mappings are identified, DataDiff adds selection queries exam-
ining one column predicates, two column predicates, and three
column predicates (all excluding the primary key), as long as they
provide no false-positives, until all of the tuples that need to be
deleted are indeed deleted. In the worst case, DataDiff will use
the primary key to delete the remaining tuples that need to be
deleted but were not. In general, this problem is related to the view
synthesis problem (see Section 2) and is therefore intractable.
3. Detects added rows. DataDiff simply adds the rows that were
inserted in the destination, in one large INSERT statement.
4. Detects modifications to a single column where one mod-
ification was performed on all the modified rows. DataDiff
first assumes a single modification was made to a column and uses
a random search algorithm to perform a regression between the
values of two versions of a column. If the assignment is successful,
it adds the change to the set of modifications.
5. Detects modifications to a single column where a split
point was used to perform one modification to rows with
a value less than the split point, and another modification
was performed on the rest of the rows. If the regression assign-
ment fails with the assumption of single modification, DataDiff
then tries to find a split point in the origin column and runs the
same regression procedure twice: one for between the values less
than the split point in the origin column and their destination coun-
terparts, and one for between the values greater than the split point
in the origin and the corresponding destination entries.

6. Provides a concise explanation of the data level changes.
DataDiff returns two sets of results, one, a list of queries that takes
the origin dataset as input and outputs the destination, and two, the
list of tuples that were modified, added, removed, or updated. The
first set of results can help users track the logical changes between
the versions while the second set, the list of changed records, can
help track the merge conflicts from diffing sibling versions.

4 DEMONSTRATION DESCRIPTION
We have built an interface that allows users to interpret the differ-
ences between dataset versions in an interactive manner. We now
describe this interface as well as the demonstration experience.

Figure 2: DataDiff Dataset Modification

In addition to the critical and sometimes problematic merge oper-
ations between two children of the same parent, dataset versioning
between a parent and its child is also very common. To address
both cases, DataDiff takes an “origin dataset” and a “destination
dataset” and reports back the most succinct summarization (e.g.
the shortest list of queries) that allows us to derive the destination
dataset from the origin dataset. The “Dataset Input” component
of our interface, shown in Figure 2, is the first step of the demo
process, consisting of forms to upload the origin and the destina-
tion datasets. To make the demo experience flexible yet succinct,
we provide two extra modification input methods to be used in-
stead of the destination dataset input: parameterized (e.g. canned)
updates and SQL. This interface will create a destination dataset,
store it, and allow use of this new version in the future DataDiff
operations. To store and reuse these dataset versions, the interface
provides the users with a local repository called “My Datasets”.
We will have prepared source and destination datasets for shorter
demonstrations, including cleaned and dirty versions of the City of
Chicago Food Inspection dataset [20].

To run DataDiff, the user inputs the origin and the destination
datasets.DataDiffwill then direct the user to the “ConfirmColumn
Mappings” page, as depicted in Figure 3. This shows a summary
of the added, removed, the modified column names of the origin
dataset and a mapping table to confirm the column mappings from
the origin to the destination dataset. Each row in the table is a
tuple that contains a column name from the origin dataset, its
mapping in the destination dataset, and a boolean value indicating
whether the mapped column is the primary key in the destination
dataset. A tuple with a non-null first entry and a non-null second

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Gunce Su Yilmaz et al.

Figure 3: DataDiff Column Mappings

entry indicates an unchanged or renamed column in the destination
dataset. A tuple with the first two entries null and non-null indicates
an added column, and a tuple with first two entries non-null and
null indicates a deleted column in the destination dataset.DataDiff
will predict the mapped columns and prompt the user to fix any
mappings by dragging the column names in the second column of
the mapping table to the appropriate place. If a user wants to detach
a predicted mapping, they can add an empty tuple to the mapping
table and then use the dragging feature accordingly. Although we
ask for manual input in this step, we present a simple interface for
diffing schema modifications.

Figure 4: DataDiff Output
When the schema checking is completed, DataDiff will finally

compare the versions and output two sets of results, depicted in
Figure 4. The first set lists the SQL queries DataDiff has applied
to the origin dataset in order to get the destination dataset. If a
user wants to store their own version of the query list, for a more
efficient or more human-readable version, they can modify each
query and test if the modified queries applied to the origin dataset
will perfectly match the destination dataset. The second set of
results is a sample of tuple-based representation from the entire
diff between the two versions—displaying the added, removed, and
the modified tuples in the origin dataset.

To enable merge, starting from the result of the diff, DataDiff
will also allow the user to undo operations on certain tuples by
selecting examples listed in the diff results. This allows users to gen-
erate a new dataset with some of the operations between origin and
destination undone. If the user wants to persist a SQL schema for
the destination dataset, there is an optional step “Finalize Schema”,
displayed in Figure 5.DataDiffwill check if the destination dataset

for the merge is in compliance with the data types and constraints
that the user has provided.

Figure 5: DataDiff Final Destination Schema

This demonstration experience will highlight how DataDiff
enables easy conflict resolution, provides concise diff explanations,
and illustrates the challenges in building an efficient data-diffing
tool in the presence of arbitrary updates.

REFERENCES
[1] [n. d.]. Dat. http://datproject.org/. ([n. d.]).
[2] [n. d.]. dbv. https://dbv.vizuina.com/. ([n. d.]).
[3] [n. d.]. Liquibase. http://www.liquibase.org/. ([n. d.]).
[4] [n. d.]. Noms. https://github.com/attic-labs/noms. ([n. d.]).
[5] Available at: http://data-people.cs.illinois.edu/papers/datadiff.pdf. Towards a

Theory of DATA-DIFF : Optimal Synthesis of Succinct Data Modification Script.
In Technical Report.

[6] Azza Abouzied et al. 2013. Learning and verifying quantified boolean queries by
example. In PODS. ACM, 49–60.

[7] Ilsoo Ahn et al. 1986. Performance evaluation of a temporal database management
system. In ACM SIGMOD Record, Vol. 15. ACM, 96–107.

[8] Mohammed Al-Kateb et al. [n. d.]. Temporal query processing in Teradata. In
EDBT’13. ACM, 573–578.

[9] Anant Bhardwaj, Souvik Bhattacherjee, Amit Chavan, Amol Deshpande, Aaron J
Elmore, Samuel Madden, and Aditya G Parameswaran. 2015. Datahub: Collabo-
rative data science & dataset version management at scale. CIDR (2015).

[10] Angela Bonifati et al. 2016. Learning join queries from user examples. TODS 40,
4 (2016), 24.

[11] Amit Chavan and Amol Deshpande. 2017. DEX: Query Execution in a Delta-based
Storage System. In SIGMOD. ACM, 171–186.

[12] Anish Das Sarma et al. 2010. Synthesizing view definitions from data. In ICDT.
ACM, 89–103.

[13] Joseph M Hellerstein et al. 2017. Ground: A Data Context Service.. In CIDR.
[14] Silu Huang, Liqi Xu, Jialin Liu, Aaron J. Elmore, and Aditya G. Parameswaran.

2017. OrpheusDB: Bolt-on Versioning for Relational Databases. PVLDB (2017).
[15] Christian S Jensen and Richard T Snodgrass. 1999. Temporal data management.

IEEE Transactions on Knowledge and Data Engineering 11, 1 (1999), 36–44.
[16] Linan Jiang, Betty Salzberg, David B Lomet, and Manuel Barrena García. 2000.

The BT-tree: A Branched and Temporal Access Method.. In VLDB. 451–460.
[17] GadM Landau et al. 1995. Historical queries alongmultiple lines of time evolution.

The VLDB Journal 4, 4 (1995), 703–726.
[18] Michael Maddox, David Goehring, Aaron J Elmore, Samuel Madden, Aditya

Parameswaran, and Amol Deshpande. 2016. Decibel: The relational dataset
branching system. VLDB 9, 9 (2016), 624–635.

[19] Kiril Panev and Sebastian Michel. 2016. Reverse Engineering Top-k Database
Queries with PALEO.. In EDBT. 113–124.

[20] Theodoros Rekatsinas et al. 2017. HoloClean: Holistic Data Repairs with Proba-
bilistic Inference. PVLDB 10, 11 (2017), 1190–1201.

[21] Betty Joan Salzberg and David B Lomet. 1995. Branched and Temporal Index
Structures. College of Computer Science, Northeastern University.

[22] Cynthia M Saracco, Matthias Nicola, and Lenisha Gandhi. 2010. A matter of time:
Temporal data management in DB2 for z/OS. IBM Corporation, New York (2010).

[23] Q. T. Tran, C. Y. Chan, and S. Parthasarathy. 2009. Query by Output.
[24] Meihui Zhang et al. 2013. Reverse engineering complex join queries. In SIGMOD.

ACM, 809–820.

http://datproject.org/
https://dbv.vizuina.com/
http://www.liquibase.org/
https://github.com/attic-labs/noms
http://data-people.cs.illinois.edu/papers/datadiff.pdf

	Abstract
	1 Introduction
	2 Background
	3 The Data-Diff Problem and Solution
	4 Demonstration Description
	References

