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ABSTRACT

Exploratory data analysis often involves repeatedly browsing a
small sample of records that satisfy certain predicates. We propose
a fast query evaluation engine, called NeedleTail, aimed at letting
analysts browse a subset of the query result on large datasets as
quickly as possible, independent of the overall size of the result.
NeedleTail introduces DensityMaps, a lightweight in-memory
indexing structure, and a set of efficient and theoretically sound
algorithms to quickly locate promising blocks, trading off locality
and density. In settings where the samples are used to compute
aggregates, we extend techniques from survey sampling to mitigate
the bias in our samples. Our experimental results demonstrate that
NeedleTail returns results 7× faster on average on HDDs while
occupying up to 23× less memory than existing techniques.
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1 INTRODUCTION

When performing exploratory data analysis on new or unfamiliar
datasets, analysts often issue queries, examine a small subset or
sample of records, incrementally change their queries based on
observations from this sample, and then repeat this process until
they are satisfied. Thus exploratory data analysis has three facets
that differentiate it from traditional data analysis: (i) interactivity,
i.e., analysts wait to look at the results and cannot tolerate long
delays [28], (ii) incompleteness, i.e., instead of looking at the millions
of result records, analysts are satisfied with examining a small num-
ber (a few “screenfuls”) of records, and (iii) ad-hoc predicates, i.e.,
analysts iteratively issue queries with small unpredictable modifi-
cations on the previous predicates, as well as periodically “zooming
out” to explore different characteristics of a given data set.

When exploring data by repeatedly issuing ad-hoc queries, there
are two primary ways users consume the results of the queries
—summarization or browsing [18, 38]. That is, they either compute
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some aggregate summary statistics and then possibly visualize these
statistics (summarization), or they examine a few tuples in the query
result (browsing). The browsing or any-k use case is as common
as summarization. For example, a recent study [31] reports that
analysts often want to browse a subset of records to examine their
analysis results. Moreover, many popular SQL IDEs [3–5] implicitly
limit the number of result records displayed, recognizing the fact
that users often do not need to, nor do they have the time to see all
of the result records. Even outside of the context of SQL IDEs, in
tabular interfaces such as Microsoft Excel or Tableau’s Table View,
users only browse or examine a subset of records—depending on
the user, this number could be in the hundreds or thousands, even
though the result set can number in the millions or billions

Perhaps surprisingly, despite the wealth of work on exploratory
data analysis, there is little work that has addressed this browsing
problem: how do we quickly return a small subset of records that
satisfy arbitrary user-specified predicates, without requiring the
records be the “top” ones (for some definition of top), or requiring
that they be a random subset of all satisfying records. We call this
any-k problem.

Current database techniques are not optimal for any-k problem,
in terms of both query performance and memory consumption. For
example, existing databases support LIMIT/any-k by returning the
first k result records as soon as they are ready, via the selection of
query plans that can pipeline and produce early results. This is often
not interactive, especially if the query involves selective predicates.
Similarly, traditional indexing structures, such as B+Trees, could
efficiently answer some any-k queries. However, to support any-k
queries with an arbitrary combination of predicates, as is typical
in exploratory browsing, we would need B+Trees on every single
attribute or combination of attributes, which will be prohibitive
in terms of space and maintenance costs [9, 26, 33, 40]. Bitmap in-
dexes are a more space-efficient approach and can support arbitrary
predicates via bitwise operations. But even so, storing a bitmap in
memory for every single value for every single attribute (e.g., 10s
of values for 100s of attributes) is impossible for large datasets.

To address these limitations, we introduce a new data explo-
ration engine, NeedleTail.1 Specifically, we develop indexing and
query evaluation techniques to address the any-k problem. We now
describe these contributions and the underlying challenges.
DensityMaps: A Lightweight Indexing Scheme. Inspired by bit-
map indexes, we develop a simple and lightweight indexing scheme
called DensityMaps. Unlike bitmaps, which store a column of bits
for each distinct value of an attribute, DensityMaps store an array
of densities for each block of records, where the array contains
one entry per distinct value of the attribute. This representation
1We named NeedleTail after the world’s fastest bird [6].
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allows DensityMaps to be 3-4 orders of magnitude smaller than
bitmaps, so we can easily store a density map for every attribute
in the data set, and these can comfortably fit in memory even for
large datasets. Note that prior work has identified other lightweight
statistics that help rule out blocks that are not relevant for certain
queries [10, 13, 25, 30, 39]; we compare against the appropriate ones
in our experiments in Section 7.
DensityMaps: Density vs. Locality. In order to use DensityMaps
to retrieve k records that satisfy query constraints, one approach
would be to identify blocks that are likely to be “dense” in that
they contain more records that satisfy the conditions and preferen-
tially retrieve those blocks. However, this density-based approach
may lead to excessive random access. Because random accesses—
whether in memory, on flash, or on rotating disks—are generally
orders of magnitude slower than sequential accesses, this is not
desirable. Another approach would be to identify a sequence of con-
secutive blocks with k records that satisfy the conditions, and take
advantage of the fact that sequential access is faster than random
access, exploiting locality. In this paper, we develop algorithms that
are optimal from the perspective of density and locality respectively.

Overall, while we would like to optimize for both density and
locality, optimizing for one usually comes at the cost of the other,
so developing the globally optimal strategy to retrieve k records
is non-trivial. We develop a simple cost model for storage media
in this paper, and use this to develop an algorithm that is optimal
from the perspective of overall I/O . We further extend the density
and locality-optimal algorithms to develop a hybrid algorithm that
fuses the benefits of both approaches.We integrated all four of these
algorithms, coupled with indexing structures, into our NeedleTail.
On both synthetic and real datasets, we observe that NeedleTail
can be several orders of magnitude faster than existing approaches
when returning k records that satisfy user conditions.
Aggregate Estimation with Any-k Results. In some cases, in-
stead of just optimizing for retrieving any-k , it may be important to
use the retrieved results to estimate some aggregate value. Although
NeedleTail can retrieve more samples than random sampling in
a given time period, its estimate of the aggregate value may be
biased, since NeedleTail may preferentially sample from certain
blocks. This is especially true if the attribute being aggregated is
correlated with the layout of data on disk or in memory. We employ
survey sampling [20, 29] techniques to support accurate aggregate
estimation while retrieving any-k records. In particular, we employ
cluster sampling techniques to reason about block-level sampling,
along with unequal probability estimation techniques to correct for
the bias. With these changes, NeedleTail is able to achieve error
rates similar to pure random sampling—our gold standard—inmuch
less time, while returning multiple orders of magnitude more records
for the analyst to browse. Thus, even when computing aggregates,
NeedleTail is substantially better than other schemes.
Outline. The chief contribution of this paper is the characteri-
zation of the any-k problem (Section 2) and the development of
NeedleTail, an efficient data exploration engine for both browsing
and aggregate estimation that retrieves samples orders of magni-
tude faster than other approaches. NeedleTail’s design includes
its indexing structure (Section 3), retrieval algorithms (Section 4),
and statistical techniques to correct for biased sampling in aggre-
gate estimation (Section 5), with extensions for complex queries
(Section 6). Figure 1 depicts the overall architecture of NeedleTail.
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Figure 1: NeedleTail Architecture

2 PROBLEM FORMULATION

We now formally define the any-k problem. We consider a standard
OLAP data exploration setting where we have a database D with
a star schema consisting of continuous measure attributesM and
categorical dimension attributesA. For simplicity, we focus on a sin-
gle database table T , with r dimension attributes and s measure at-
tributes, leading to the schema:T = {A1,A2, ...,Ar ,M1,M2, ...,Ms };
our techniques generalize beyond this case, as we will show later.
We use δi to denote the number of distinct values for the dimension
attribute Ai with distinct values {V 1

i ,V
2
i , ..,V

δi
i }.

Consider a selection query Q on T where the selection condi-
tion is a boolean formula formed out of equality predicates on the
dimension attributes A. We define the set of records which form
the result set of query Q to be the valid records with respect to
Q . As a concrete example, consider a data analyst exploring cam-
paign finance data. Suppose they want to find any-k individuals
who donated to Donald Trump, live in a certain county, and are
married. Here, the query Q on T has a selection condition that is
a conjunction of three predicates—donated to Trump, lives in a
particular county, and is married.

We now define an any-k query Qk as the query which returns k
valid records out of the set of all valid records for a given query Q .
Qk can be written as follows:

SELECT ANY-K(∗) FROM T WHERE ⟨CONDITION⟩
For now we consider simple selection queries of the above form;

we extend our approach to support aggregates in Section 5, group-
ing in Section 6 and joins in technical report [24].

We formally state the any-k sampling problem for simple selec-
tion queries as follows:

Problem 1 (Any-k Sampling). Given an any-k query Qk , the
goal of any-k sampling is to retrieve any k valid records in as little
time as possible.

Unlike random sampling, any-k does not require the returned
records to be randomly selected. Instead, any-k sampling prioritizes
query execution time over randomness. We will revisit the issue of
randomness in Section 5.

3 DENSITY MAP INDEX

To support the fast retrieval of any-k samples, we develop a light-
weight indexing structure called theDensityMap. Our design starts
from the observation that modern hard disk drive (HDDs) typically
have 4KB minimum storage units called sectors, and systems may
only read or write from HDDs in whole sectors. Therefore, it takes
the same amount of time to retrieve a block of data as it retrieves a



single record. DensityMaps take advantage of this fact to reason
about the data at the block-level, rather than at the record-level as
bitmaps [11, 34, 41, 42] do. Similarly, SSD and RAM access pages
or cache lines of data at a time.

Thus, for each block, a DensityMap stores the frequency of set
bits in that block, termed the density, rather than enumerating the
set bits. Formally, for each attribute Ai , and each attribute value
V
j
i taken on by Ai , we store a DensityMap D

j
i , consisting of λ

entries, one corresponding to each block on disk. We can express
D
j
i as {d

j
i1
,d

j
i2
, ..,d

j
ik
, ..,d

j
iλ
}, where d jik is the percentage of tuples

in block k that satisfy the predicate Ai = V
j
i . While DensityMaps

are stored per column, the underlying data is assumed to be stored
in row-oriented fashion. Note thatDensityMaps could equivalently
be applied to a column-store setting.
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Figure 2: DensityMaps
Example 1. The table in Figure 2 is stored over 9 blocks. The den-

sity map D1
1 forV

1
1 is {0.2, 0.1, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 0}, indicating

20 percent of tuples in block 1 and 10 percent of tuples in block 2 have
value V 1

1 for attribute A1 respectively.
DensityMaps are a very flexible index structure as they can

estimate the percentage of valid records for any ad-hoc query with
single or nested selection constraints. For queries with more than
one predicate, we can combine multiple DensityMaps together
to calculate the estimated percentage of valid records per block,
multiplying densities for conjunction and adding them for disjunc-
tion, akin to selectivity estimation in query optimization [14]. As
in query optimization, this assumption may not always hold, but
as we demonstrate in our experiments on real datasets, it still leads
to effective results. Furthermore, DensityMaps drastically reduce
the number of disk accesses by skipping blocks whose estimated
densities are zero (and thus definitely do not contain valid records).
Thus, compared to bitmaps, DensityMaps are a coarser statistical
summary of valid records in each block for each attribute value.

4 ANY-K ALGORITHMS

In this section, we introduce four algorithms that take advantage
of DensityMaps to perform fast any-k sampling, making use of
the following two observations.

Observation 1 (Density: Denser is better). Retrieving a
block with high density is preferable to retrieving a low density block.

First, a high density block has more valid records than a low density
block. Thus, it is more beneficial to retrieve the high density block,
so that overall, fewer blocks are retrieved.

Observation 2 (Locality: Closer is better). Retrieving neigh-
boring blocks is preferable to retrieving blocks which are far apart.

In a HDD, the time taken to retrieve a block from disk can be split
into seek time and transfer time. The seek time is the time it takes to
locate the desired block, and the transfer time is the time required
to actually transfer the data. Blocks which are far apart incur addi-
tional seek time, while neighboring blocks typically only require
transfer time. Thus, retrieving neighboring blocks is preferred on
HDDs. For in-memory data and SSDs, the locality observation may
not be as important, since the random I/O performance of these
storage media is not as poor as it is on HDDs. For our purposes, we
focus on the HDDs, but we also evaluate our techniques on SSDs.

4.1 Two Extremes

Our two basic any-k sampling algorithms take advantage of each of
these observations: Density-Optimal optimizes for density while
Locality-Optimal optimizes for locality. These two algorithms are
optimal extremes, favoring just one of locality or density. Details
are provided in our technical report [24].
Density-Optimal Algorithm. The goal of Density-Optimal is
to use our in-memory DensityMap index to retrieve the densest
blocks until k valid records are found. To this end, we adapt the
threshold algorithm (TA) by Fagin et al. [12] for top-k processing
on sorted lists. The “scores” of the objects in TA are the densities of
the blocks, and the aggregation functions in TA are a combination
of products and summations based on the ANDs and ORs in the
query predicate. To support this algorithm, we need to maintain
sorted DensityMaps in addition to regular DensityMaps. One
small difference is that the original threshold algorithm would
attempt to find the p densest blocks. However, in our setting, we do
not know the value of p in advance; we only know k , the number of
valid tuples required, so we need to set the value of p dynamically.

Depending on the order of the blocks returned by Density-
Optimal, the system may perform many unnecessary random
I/O operations. For example, if Density-Optimal returns blocks
{B100,B1,B83,B3}, the system may read block B100, seek to block
B1, and then seek back to block B83. Instead, we can sort the blocks
{B1,B3,B83,B100} before fetching them from disk, thereby minimiz-
ing random I/O and overall query execution time.
Locality-Optimal Algorithm. Locality-Optimal prioritizes for
locality rather than density, aiming to identify the shortest sequence
of blocks that guarantee k valid records. The naive approach to
identify this would be to consider the sequence formed by every
pair of blocks (along with all of the blocks in between)—leading
to an algorithm that is quadratic in the number of blocks. Instead,
Locality-Optimal is linear in the number of blocks. Locality-
Optimal moves across the sequence of blocks using a sliding win-
dow formed using a start and an end pointer, and eventually returns
the smallest possible window with k valid records.

4.2 Hybrid Any-k Algorithms

The two desired properties of density and locality can often be at
odds with each other depending on the data layout; dense blocks
may be far apart, and neighboring blocks may contain many blocks
which have few valid records. In this subsection, we first present a
cost model to estimate the I/O cost of an any-k algorithm.
A Simple I/O Cost Model. To set up the cost model for I/O for
HDDs, we profile the storage system. We randomly choose various
starting blocks and record the time taken to fetch other blocks



that are varying distances away. Our experiment demonstrates that
with block size equal to 256KB, the I/O cost is smallest when doing
a sequential I/O operation to fetch the next block (∼ 2ms), and
increases with the distance up to a certain maximum distance t
after which it becomes constant (∼ 12ms). Formally, for two blocks
i and j, we model the cost of fetching block j after block i as:

RandIO (i, j ) =



cost (i, j ) if |j − i | ≤ t

constant otherwise

On the other hand, the I/O cost model for SSDs is different from
the one we see for HDDs. Overall, we see a constant time (∼ 0.6ms)
to fetch a block independent of the block distance
IO-Optimal Algorithm. IO-Optimal considers both density and
locality to find the set of blocks with the minimum I/O cost overall.
Given our cost model, we can use dynamic programming to find
the optimal set of blocks with k valid records.

We defineC (s, i ) as the minimal cost to retrieve s estimated valid
records when block i is amongst the blocks fetched. We define
Opt (s, i ) as the cost to retrieve the optimal set of blocks with s
estimated valid records when considering the first i blocks. Finally,
we denote si as the estimated number of valid records inside block
i . With this notation, we have:

C (s, i ) = min
{

C (s − si , j ) + RandIO (j, i ), ∀j ∈ [ i − t , i − 1]
Opt (s − si , i − t − 1) + RandIO (i − t − 1, i )

Opt (s, i ) = min
{

C (s, i )
Opt (s, i − 1)

The intuition is as follows: for each block i that has si estimated
valid records, either the block can be in the final optimal set or not. If
we decide to include block i , the cost is the minimum cost amongst
the following: (i) the smallest I/O cost of having s − si samples at
block j where |i − j | ≤ t , plus the cost of jumping from block j to i
(i.e.,C (s−si , j )+RandIO (j, i )), or (ii) the optimal cost at block i−t−1,
plus the random I/O cost of jumping from some block in the first
i−t−1 blocks to block i (i.e.,Opt (s−si , i−t−1)+RandIO (i−t−1, i )).

For the second expression, if we exclude block i , then the optimal
cost is the same as the optimal cost at block i − 1. Consequently,
the optimal cost at block i is the smallest value in these two cases.
Hybrid Algorithm. Even though IO-Optimal is able to return the
optimal I/O cost for fetching any-k samples, its much higher com-
putation cost makes it impractical for large datasets. We propose
Hybridwhich simply selects between the best ofDensity-Optimal
and Locality-Optimal, using our I/O cost model.

5 AGGREGATE ESTIMATION

So far, our any-k algorithms retrieve k records without any con-
sideration of how representative they are of the entire population.
If these records are used to estimate an aggregate, there could be
bias in this value due to possible correlations between the value
and the data layout. While this is fine for browsing, it leaves the
user unable to make any statistically significant claims about the
aggregated value. To address this problem, we make two simple
adjustments to extend our any-k algorithms. First, we introduce
a Two-Phase sampling scheme where we add small amounts of
random data to our any-k estimates—this allows us to calibrate and
correct for bias. Second, we correct the bias by leveraging techniques

from survey sampling literature. Such approaches have been em-
ployed in other approximate query processing settings [21, 23, 27],
but their application to any-k is new.
Two-Phase Sampling.Wepropose aTwo-Phase sampling scheme,
in which we collect a large proportion (1-α ) of the k requested sam-
ples using an any-k algorithm, and collect the rest (α ) in a random
fashion. The user chooses the parameter α upfront based on how
much random sampling they wish to add. While a larger α may
reduce the number of total samples needed to obtain a statistically
significant result, the time taken to retrieve random samples greatly
exceeds the time taken to retrieve samples based on our any-k algo-
rithms. Therefore, α needs to be carefully chosen; we experiment
with α in Section 7. We provide a more formal description of our
sampling procedure in our technical report [24].
Unequal Probability Estimation. Within the Two-Phase sam-
pling scheme, the probability a block is sampled is not uniform.
Therefore, we must use an unequal probability estimator [37] and
inversely weigh samples based on their selection probabilities. We
apply two different estimators for this: the Horvitz-Thompson [20]
and ratio [29] estimators. Even though the Horvitz-Thompson esti-
mator is an unbiased estimator, its variance is known to often be
large. On the other hand, the ratio estimator is known to have low
variance. We describe further details and formulae in [24].

6 GROUPING

Rather than just a simple any-k query, users may want to retrieve
k values per group. Unlike a traditional GROUP-BY, which returns
a single aggregated tuple per group, we require k sample non-
aggregated tuples per group, so that users can aggregate the tuples
per group in any way they wish. Although a trivial solution would
be to run a separate any-k query per group, we propose an algorithm
that can share the computation across groups in the common case
when users want k values per group.

In order to run our any-k algorithms for all groups, we first
define the combined density of the lth block as the multiplication of
two factors: (1) the density of the lth block with respect to predicate
S , and (2) the sum of the densities for group values in the grouping
attribute, AG , in the lth block that still need to be sampled. The
first factor has been discussed previously, while the second factor
can be defined as:

d∗Gl
=

1
RPB

δG∑
j=1

min
(
k − r

j
G , d

j
Gl
× RPB

)
(1)

where RPB is records_per_block , r jG is the number of samples
already retrieved for the grouping attribute valueV j

G , and d
j
Gl

is the

density of the lth block for the value V j
G . The expression inside the

min function estimates the number of expected records in block l for
each group V j

G , but limits the estimate by the number of samples
left to be retrieved for that group. Thus, the combined density
(dSld

∗
Gl
), where dSl is the density of the lth block with respect to

predicate S , gives priority to groups that have had fewer than k
samples retrieved so far, and groups that already have k samples
no longer contribute to the combined density. The 1/RPB in front
of the summation for d∗Gl

acts a normalization factor to ensure that
d∗Gl

, and thereby dSld
∗
Gl

, are both density values between 0 and 1.
With this combined density estimate dSld

∗
Gl
, we can now con-

struct an iterative any-k algorithm for grouped sampling operations:



(1) Update all densities using with dSld
∗
Gl

. (2) Run one of the any-k
algorithms to retrieveψ blocks with the highest combined density.
(3) Update the densities of the ψ blocks as 0. (4) If k samples still
have not been retrieved for each group, go back to step (1). We
present the full pseudocode, extensions to multi-attribute grouping
and join, and the selection ofψ in the technical report [24].

7 PERFORMANCE EVALUATION

In this section, we evaluate NeedleTail, focusing on runtime, mem-
ory consumption, and accuracy of estimates. We show that our
DensityMap-based any-k algorithms outperform any “first-to-k-
samples” algorithms using traditional OLAP indexing structures
such as bitmaps or compressed bitmaps on a variety of synthetic
and real datasets. In addition, we empirically demonstrate that our
Two-Phase sampling scheme is capable of achieving as accurate
an aggregate estimation as random sampling in a fraction of the
time. In our technical report [24], we study the impact of a number
of parameters on NeedleTail including: (i) data size, (ii) number
of predicates, (iii) density, (iv) block size, and (v) granularity. We
also demonstrate that the join variant of any-k algorithms provide
substantial speedups for key-foreign key joins.

7.1 Experimental Settings

We now describe our experimental workload, the evaluated algo-
rithms, and the experimental setup.
Airline Dataset [1]. This dataset contained the details of all flights
within the USA from 1987–2008, sorted based on time. It consisted
of 123 million rows and 11 attributes with a total size of 11 GB.
For our experiments on error (described later), we estimated the
average arrival delay, average departure delay, and average elapsed
time for flights. The details of the queries are listed in Tables 1.

Q# Query Selectivity Result Tuples 1% any-k Equality Predicates on

Q1 0.004% 5499 54 carrier AND destination
Q2 0.007% 8459 84 month AND origin AND destination
Q3 0.033% 41000 410 month AND origin
Q4 0.785% 969300 9693 dayofwork AND origin
Q5 1.172% 1447400 14474 origin

Table 1: Query details for airline workload.

We describe experiments on another real dataset (Taxi) as well as
a synthetic dataset in our technical report [24]; results are similar.

We compared our any-k algorithms presented in Section 4 against
the following “first-to-k-samples” baselines: (i) Bitmap-Scan: As-
suming we have bitmaps for every predicate, we use bitwise oper-
ations to construct a resultant bitmap corresponding to the valid
records. We then retrieve the first k records whose bits are set in
this bitmap. (ii) Lossy-Bitmap [39]: Lossy-Bitmap is a variant of
bitmap indexes where a bit is set for each block instead of each
record. For each attribute value, a set bit for a block indicates that
at least one record in that block has that attribute value. During
data retrieval, we perform bitwise operations then fetch k records
from the first few blocks which have their bit set. (iii) EWAH:
This baseline is identical to Bitmap-Scan, except the bitmaps are
compressed using the Enhanced Word-Aligned Hybrid (EWAH)
technique [2, 26].

We choose in-memory bitmap indexes as our baseline as opposed
to other common indexing techniques, such as B+Trees, for multiple
reasons: first, given the high storage cost and unknown exploratory
workloads, it would be infeasible to store B+Tree indexes for every
combination of attributes [26], thereby resulting in false-positives

when using a B+Tree that “misses” some of the predicates in the
query, and taking a lot more time to answer any-k queries; second,
even if the B+tree index covering the query predicates is available,
the I/O cost of retrieving the tuples would be identical to that
of bitmap indexes (since they would retrieve tuples in the same
order), while its computation cost is not likely to be smaller (since
B+Tree traversals are branch-intensive and relatively inefficient on
modern CPUs, compared to bitmap indexes that are parallelizable,
and admit efficient bit manipulation operations). Thus, in-memory
bitmap indexes end up being a suitable proxy for the minimum
possible time taken by traditional indexes, including B+Trees.
Setup. All experiments were conducted on a 64-bit Linux server
with 8GB of main memory and 1TB HDD. We ran 5 trials (30
trials for the random sampling experiments) for each query on each
dataset. To minimize experimental variance, we discarded the trials
with the maximum and minimum runtime and reported the average
of the remaining.

7.2 Query Execution Time

Figures 3 shows the runtimes of our algorithms over 5 diverse
queries for the airline dataset. We split the runtime of each query
into I/O time (bottom part of each bar) and CPU time (top part
of each bar). For each query and sampling rate, we normalized
the runtime of each algorithm by the largest runtime across all
algorithms, while also reporting actual runtime (in ms) taken by
Hybrid and the maximum runtime.

In Figure 3, we noticed that our any-k algorithms consistently
outperformed the bitmap-based baselines: Density-Optimal had a
speedup of up to 8× compared to Bitmap-Scan and EWAH, while
Locality-Optimal had a speedup of up to 7×. Across all queries,
when sampling rate equals 1%, Density-Optimal and Locality-
Optimal were on average 3× and 5× faster than Bitmap-Scan and
EWAH, despite having a much smaller memory footprint. We also
observed that, on HDDs, the I/O time was the bottleneck, occu-
pying 90% of the runtime on average. Moreover, the I/O time of
Density-Optimal and Locality-Optimal was on average 4× and
3× faster than I/O time of Bitmap-Scan and EWAH. Compared
with Locality-Optimal, Density-Optimal fetched up to 10% less
blocks, resulting in less I/O time and consequently query execution
time than Locality-Optimal in all of cases.Hybrid ends up always
selecting the faster algorithm in both this and the taxi workload,
with an average speedup of 4×. For example, for Q4 with 1% sam-
pling rate Hybrid’s time is closer to Density-Optimal, and half of
that of Locality-Optimal.

We also compared the runtimes of any-k algorithms with base-
lines on SSDs [24]. We observed that Density-Optimal was the
fastest as it fetches the least number of blocks.

7.3 Memory Consumption

Dataset Size # Tuples Card. Bitmap EWAH Lossy DensityMap

Synthetic 8GB 100M 16 191MB 183MB 0.06MB 4MB
Taxi 21GB 253M 64 1937MB 664MB 0.7MB 42MB
Airline 11GB 123M 805 11852MB 744MB 4.0MB 255MB

Table 2: Memory consumption of index structures.

Table 2 reports the amount of memory used by DensityMaps com-
pared to the other three bitmap baselines on three datasets [24]. We
observed that DensityMaps are very lightweight and consumed
around 51×, 47×, and 47× less memory than uncompressed bitmaps



Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5
0

20

40

60

80

100

120

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

15 28

22

226

171

31

68

135
2397 2059

64 108 148 658 638 93 369 6000 5146397

Sampling Rate: 1% Sampling Rate: 10%

Hybrid Density-Optimal Locality-Optimal Bitmap-Scan EWAH Lossy-Bitmap

Figure 3: Query runtimes for airline workload on a HDD.

102 103 104 105

Time (ms)

0

10

20

30

40

50

Er
ro

r 
(%

)

Density-Optimal
Two-Phase (  = 0.1)
Two-Phase (  = 0.3)
Bitmap-Random

(a) Airline - Ratio Estimator

102 103 104 105

Time (ms)

0

10

20

30

40

50

Er
ro

r 
(%

)

Density-Optimal
Two-Phase (  = 0.1)
Two-Phase (  = 0.3)
Bitmap-Random

(b) Airline - HT Estimator

Figure 4: Time vs empirical error.

respectively in the three datasets. Even with EWAH-compression,
we observed an almost 49× reduction in size for the taxi dataset for
DensityMaps relative to EWAH. In the airline dataset, since the
selectivity of each attribute value is low, EWAH compressed the
bitmaps much better than in the other two datasets. Still, EWAH
consumed 3×more memory than DensityMap. Lastly, since Lossy-
Bitmap requires only one bit per block while DensityMap is rep-
resented as a 64-bits double per block respectively, Lossy-Bitmap
unsurprisingly consumed less memory than DensityMap. How-
ever, as we showed in Section 7.2, the smaller memory consumption
incurred a large cost in query latency due to the large number of
false positives (e.g., Q3 with sampling rate 10% in Figure 3), espe-
cially when the number of predicates is large and exhibit complex
correlations. In comparison, the DensityMap-based any-k algo-
rithms were orders of magnitude faster than the baselines, while
still maintaining a modest memory footprint (∼ 0.1% of original
dataset).

7.4 Time vs Error Analysis

Using the Two-Phase sampling techniques in Section 5, we can ob-
tain estimates of aggregate values on data; here we experiment with
α = 0%, 10%, 30% random samples, and use the Density-Optimal
algorithm, since it ended up performing the most consistently well
across queries and media. We compared these results with pure
random sampling (Bitmap-Random) using bitmaps on a HDD. We
used the same set of queries as in Tables 1. For each query, we var-
ied the sampling rate and measured the runtime and the empirical
error of the estimated aggregate with respect to the true average
value. Figure 4 depicts the average results in log scale.

We find that Density-Optimal performs better than the Two-
Phase sampling scheme with the ratio estimator for the initial
period until about 100ms, after which the Two-Phase sampling
schemes perform better than Density-Optimal and Bitmap-Scan.
We found this behavior repeated across other queries and trials:
Density-Optimal sometimes ends up having very low error (Fig-
ure 4a), and sometimes fairly high error [24], but the Two-Phase

sampling schemes consistently achieve low error relative toDensity-
Optimal. This is because Density-Optimal’s accuracy is highly
dependent on the correlation between the data layout and the at-
tribute of interest, and can sometimes lead to highly biased results.
At the same time, the Two-Phase sampling schemes return much
more samples and much more accurate estimates than Bitmap-
Random, effectively supporting both browsing and sampling.

8 RELATEDWORK

Data Skipping. A group of indexing techniques, including Lossy-
Bitmap [39], SMA [30] and variants of SMA [10, 13, 25], were
developed to track aggregate attribute information at the block
level for query processing. However, as shown in Section 7, Den-
sityMaps are significantly better-suited for the any-k problem.
Like NeedleTail, Sun et al.’s data skipping technique [35, 36] skips
blocks, via partitioning, but requires a workload up-front.
Approximate Query Processing. In the past decade, a number
of approximate query processing techniques [15, 16, 22] and sys-
tems [7, 8] have emerged that allow users to trade off query accuracy
for interactive response times, by employing random sampling. One
related vein of work performs online sampling [17, 19, 22, 32], using
techniques that are either similar to Bitmap-Random orDisk-Scan,
in order to achieve adequate randomization. In contrast, Needle-
Tail primarily focuses on any-k sampling. This allows NeedleTail
to avoid accessing data in random order, avoiding expensive up-
front randomization or inefficient random access to data at runtime.
Moreover, our Two-Phase sampling technique returns much larger
samples than random sampling, but in much less time and with
comparable accuracy.

Our technical report [24] provides a detailed description of re-
lated work.

9 CONCLUSIONS

We presentedNeedleTail, a data exploration engine that by retriev-
ing any-k valid records for arbitrary queries as quickly as possible.
We proposed DensityMaps, a lightweight index structure, as well
as four any-k sampling algorithms built on top of simple cost mod-
els. Our experimental evaluations demonstrated that NeedleTail is
effectively able to trade-off density and locality to speed up query
runtimes on average by 7× and is able to obtain similar error rates
to random sampling in much less time.
Acknowledgements.We thank the anonymous reviewers for their
valuable feedback.We acknowledge support from grant IIS-1513407,
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