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ABSTRACT
Existing database systems are not optimized for queries with a
LIMIT clause—operating instead in an all-or-nothing manner. In
this paper, we propose a fast LIMIT query evaluation engine, called
NEEDLETAIL, aimed at letting analysts browse a small sample of
the query results on large datasets as quickly as possible, indepen-
dent of the overall size of the result set. NEEDLETAIL introduces
density maps, a lightweight in-memory indexing structure, and a
set of efficient algorithms (with desirable theoretical guarantees)
to quickly locate promising blocks, trading off locality and den-
sity. In settings where the samples are used to compute aggregates,
we extend techniques from survey sampling to mitigate the bias in
our samples. Our experimental results demonstrate that NEEDLE-
TAIL returns results 4× faster on HDDs and 9× faster on SSDs
on average, while occupying up to 23× less memory than existing
techniques.

1. INTRODUCTION
Users of databases are frequently interested in retrieving only a

small subset of records that satisfy a query, e.g., by specifying a
LIMIT clause in a SQL query. Although there has been extensive
work on top-k queries that retrieve the largest or smallest results
in a result set, or that tries to provide a random sample of results,
there has been relatively little work on so-called any-k queries that
simply retrieve a few results without any requirements about the
ordering or randomness of the results.

Any-k has many applications in exploratory data analysis. When
exploring new or unfamiliar datasets, users often issue arbitrary
queries, examine a subset or sample (a “screenful”) of records, and
incrementally and re-issue their queries based on observations from
this sample [59, 29]. To support this form of exploratory brows-
ing, many popular SQL IDEs implicitly limit the number of result
records displayed, recognizing the fact that users often do not need
to, nor do they have the time to see all of the result records. For ex-
ample, phpMyAdmin1 for MySQL has a MaxRows configuration
parameter; pgAdmin2 for PostgreSQL has a rowset size parameter;
and SQL Developer3 for Oracle has a array fetch size parameter.
Even outside of the context of SQL IDEs, in tabular interfaces such
as Microsoft Excel or Tableau’s Table View, users only browse or
examine a “screenful” of records at a time.

LIMIT clauses provide a way to express any-k in traditional data-
bases, and are supported by most modern database systems [52].
Surprisingly, despite their fundamental importance, there has been

*Both authors contributed equally to this work.
1docs.phpmyadmin.net/en/latest/config.html
2pgadmin.org/docs/pgadmin3/1.22/query.html
3oracle.com/technetwork/developer-tools/sql-developer/

little work in executing LIMIT queries efficiently. Existing databases
support LIMIT/any-k by simply executing the entire query, and
returning the first k result records as soon as they are ready, via
pipelining. This is often not interactive on large datasets, especially
if the query involves selective predicates. To address this limitation,
in this paper, we develop methods that allow us to quickly identify
a subset of records for arbitrary any-k queries.

Specifically, we develop indexing and query evaluation techniq-
ues to address the any-k problem. Our new data exploration engine,
NEEDLETAIL4, employs (i) a lightweight indexing structure, den-
sity maps, tailored for any-k, along with (ii) efficient algorithms that
operate on density maps and select a sequence of data blocks that
are optimal for locality (i.e., how close are the blocks to each other),
or optimal for density (i.e., how dense are the blocks in terms of
containing relevant results). We couple these algorithms with (iii)
an algorithm that is optimal for overall I/O, by employing a sim-
ple disk model, as well as a hybrid algorithm that selects between
the locality and density-optimal variants. Finally, while any-k is
targeted at browsing, to allow the retrieved results to be used for
a broader range of use-cases involving aggregation (e.g., for com-
puting statistics or visualizations), (iv) we extend statistical survey
sampling techniques to eliminate the bias in the retrieved results.

We now describe these contributions and the underlying chal-
lenges in more detail.

(i) Density Maps: A Lightweight Indexing Scheme. Inspired by bit-
map indexes, which are effective for arbitrary read-only queries,
but are somewhat expensive to store, we develop a lightweight in-
dexing scheme called density maps. Like bitmaps, we store a den-
sity map for each value of each attribute. However, unlike bitmaps,
which store a column of bits for each distinct value of an attribute,
density maps store an array of densities for each block of records,
where the array contains one entry per distinct value of the attribute.
This representation allows density maps to be 3-4 orders of mag-
nitude smaller than bitmaps, so we can easily store a density map
for every attribute in the data set, and these can comfortably fit in
memory even on large datasets. Note that prior work has identified
other lightweight statistics that help rule out blocks that are not rel-
evant for certain queries [62, 43, 38, 15, 24]: we compare against
the appropriate ones in our experiments and argue why they are
unsuitable for any-k in Section 10.

(ii)-(iii) Density Maps: Density vs. Locality. In order to use density
maps to retrieve k records that satisfy query constraints, one ap-
proach would be to identify blocks that are likely to be “dense”
in that they contain more records that satisfy the conditions and
preferentially retrieve those blocks. However, this density-based
approach may lead to excessive random access. Because random

4We named NEEDLETAIL after the world’s fastest bird [7].
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accesses—whether in memory, on flash, or on rotating disks—are
generally orders of magnitude slower than sequential accesses, this
is not desirable. Another approach would be to identify a sequence
of consecutive blocks with k records that satisfy the conditions,
and take advantage of the fact that sequential access is faster than
random access, exploiting locality. In this paper, we develop al-
gorithms that are optimal from the perspective of density (called
DENSITY-OPTIMAL) and from the perspective of locality (called
LOCALITY-OPTIMAL).

Overall, while we would like to optimize for both density and lo-
cality, optimizing for one usually comes at the cost of the other,
so developing the globally optimal strategy to retrieve k records
is non-trivial. To combine the benefits of density and locality, we
need a cost model for the storage media that can help us reason
about their relative benefits. We develop a simple cost model in
this paper, and use this to develop an algorithm that is optimal from
the perspective of overall I/O (called IO-OPTIMAL). We further ex-
tend the density and locality-optimal algorithms to develop a hybrid
algorithm (called TWO-PHASE) that fuses the benefits of both ap-
proaches. We integrated all four of these algorithms, coupled with
indexing structures, into our NEEDLETAIL data exploration engine.
On both synthetic and real datasets, we observe that NEEDLETAIL
can be several orders of magnitude faster than existing approaches
when returning k records that satisfy user conditions.

(iv) Aggregate Estimation with Any-k Results. In some cases, instead
of just optimizing for retrieving any-k, it may be important to use
the retrieved results to estimate some aggregate value. Although
NEEDLETAIL can retrieve more samples in the same time, the es-
timate of the aggregate may be biased, since NEEDLETAIL may
preferentially sample from certain blocks. This is especially true
if the attribute being aggregated is correlated with the layout of
data on disk or in memory. We employ survey sampling [31, 42]
techniques to support accurate aggregate estimation while retriev-
ing any-k records. We adapt cluster sampling techniques to rea-
son about block-level sampling, along with unequal probability es-
timation techniques to correct for the bias. With these changes,
NEEDLETAIL is able to achieve error rates similar to pure ran-
dom sampling—our gold standard—in much less time, while re-
turning multiple orders of magnitude more records for the analyst
to browse. Thus, even when computing aggregates, NEEDLETAIL
is substantially better than other schemes.

Of course, there are other techniques for improving analytical query
response time, including in-memory caching, materialized views,
precomputation, and materialized samples. These techniques can
also be applied to any-k, and are largely orthogonal to our work.
One advantage of our density-map approach versus much of this re-
lated work is that it does not assume a query workload is available
or that queries are predictable, which enables us to support truly ex-
ploratory data analysis. Similarly, traditional indexing structures,
such as B+ Trees, could efficiently answer some any-k queries.
However, to support any-k queries with arbitrary predicates, we
would need B+ Trees on every single attribute or combination of
attributes, which often will be prohibitive in terms of space. Bitmap
indexes are a more space efficient approach, but even so, storing a
bitmap in memory for every single value for every single attribute
(10s of values for 100s of attributes) is impossible for large datasets,
as we show in our experimental analysis.

Contributions and Outline. The chief contribution of this pa-
per is the design and development of NEEDLETAIL, an efficient
data exploration engine for both browsing and aggregate estimation
that retrieves samples in orders of magnitude faster than other ap-
proaches. NEEDLETAIL’s design includes its density map indexing

structure, retrieval algorithms (DENSITY-OPTIMAL, LOCALITY-
OPTIMAL, TWO-PHASE, and IO-OPTIMAL) with extensions for
complex queries, and statistical techniques to correct for biased
sampling in aggregate estimation.

We formalize the browsing problem in Section 2, describe the
indexing structures in Section 3, the any-k sampling algorithms in
Section 4 and 5, the statistical debiasing techniques in Section 6,
extensions to complex queries in Section 7, and the system archi-
tecture in Section 8. We evaluate NEEDLETAIL in Section 9.

2. PROBLEM FORMULATION
We now formally define the any-k problem. We consider a stan-

dard OLAP data exploration setting where we have a database D
with a star schema consisting of continuous measure attributes M
and categorical dimension attributes A. For simplicity, we focus on
a single database table T , with r dimension attributes and s measure
attributes, leading to the schema: T = {A1,A2, ...,Ar,M1,M2, ...,Ms};
our techniques generalize beyond this case, as we will show in later
sections. We use δi to denote the number of distinct values for the
dimension attribute Ai with distinct values {V 1

i ,V
2
i , ..,V

δi
i }.

Consider a selection query Q on T where the selection condi-
tion is a boolean formula formed out of equality predicates on the
dimension attributes A. We define the set of records which form
the result set of query Q to be the valid records with respect to Q.
As a concrete example, consider a data analyst exploring campaign
finance data. Suppose they want to find any-k individuals who do-
nated to Donald Trump, live in a certain county, and are married.
Here, the query Q on T has a selection condition that is a conjunc-
tion of three predicates—donated to Trump, lives in a particular
county, and is married.

Given the query Q, traditional databases would return all the
valid records for Q in T , irrespective of how long it takes. Instead,
we define an any-k query Qk as the query which returns k valid
records out of the set of all valid records for a given query Q. Qk
can be written as follows:

SELECT ANY-K(∗) FROM T WHERE 〈CONDITION〉

For now we consider simple selection queries of the above form; we
show how to extend our approach to support aggregates in Section 6
and how to support grouping and joins in Section 7.

We formally state the any-k sampling problem for simple selec-
tion queries as follows:

PROBLEM 1 (ANY-k SAMPLING). Given an any-k query Qk,
the goal of any-k sampling is to retrieve any k valid records in as
little time as possible.
Note that unlike random sampling, any-k does not require the re-
turned records to be randomly selected. Instead, any-k sampling
prioritizes query execution time over randomness. We will revisit
the issue of randomness in Section 6. Next, we develop the index-
ing structures required to support any-k algorithms.

3. INDEX STRUCTURE
To support the fast retrieval of any-k samples, we develop a

lightweight indexing structure called the DENSITYMAP. DENSI-
TYMAPs share some similarities with bitmaps, so we first briefly
describe bitmap indexes. We then discuss how DENSITYMAPs ad-
dress the shortcomings of bitmap indexes.

3.1 Bitmap Index: Background
Bitmap indexes [46] are commonly used for ad-hoc queries in

read-mostly workloads [17, 64, 50, 65]. Typically, the index con-
tains one bitmap for each distinct value V of each dimension at-
tribute A in a table. Each bitmap is a vector of bits in which the ith
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bit is set to 1, if A =V for the ith record, and 0 otherwise. If a query
has a equality predicate on only one attribute value, we can simply
look at the corresponding bitmap for that attribute value and return
the records whose bits are set in the bitmap. For queries that have
more than one predicate, or range predicates, we must perform bit-
wise AND or OR operations on those bitmaps before fetching the
valid records. Bitwise operations can be executed rapidly, particu-
larly when bitmaps fit in memory.

Although bitmap indexes have proven to be effective for tradi-
tional OLAP-style workloads, these workloads typically consist of
queries in which the user expects to receive all valid records that
match the filter. Nevertheless, bitmap indexes can be used for any-
k sampling. One simple strategy would be to perform the bitwise
operations across all predicated bitmap indexes, perform a scan on
the resulting bitmap, and return the first k records with matching
bits. However, the efficiency of this strategy greatly depends on
the layout of the valid records. For example, if all valid records
are clustered near the end of the dataset, the system would have to
scan the entire bitmap index before finding the set bits. Further-
more, returning the first matching k records may be sub-optimal if
the first k records are dispersed across the dataset, since retrieving
each record would result in a random access. If a different set of
k records existed later in the dataset, but with better locality, a pre-
ferred strategy might be to return that second set of records instead.

In addition to some limitations when performing any-k sampling,
bitmap indexes often take up a large amount of space, since we
need to store one bitmap per distinct value of each dimension. As
the number of attribute values and dimension attributes increase,
a greater number of bitmap indexes is required. Even with vari-
ous methods to compress bitmaps, such as BBC [12], WAH [67],
PLWAH [22], EWAH [40], density maps consume orders of mag-
nitude less space than bitmap indexes, as we show in Section 9.

3.2 Density Map Index
We now describe how DENSITYMAP addresses the shortcom-

ings of bitmap indexes. Our design starts from the observation that
modern hard disk drive (HDDs) typically have 4KB minimum stor-
age units called sectors, and systems may only read or write from
HDDs in whole sectors. Therefore, it takes the same amount of
time to retrieve a block of data as it does a single record. DEN-
SITYMAPs take advantage of this fact to reason about the data at a
block-level, rather than at the record-level as bitmaps do. Similarly,
SSD and RAM access pages or cache lines of data at a time.

Thus, for each block, a DENSITYMAP stores the frequency of
set bits in that block, termed the density, rather than enumerating
the set bits. This enables the system to “skip ahead” to these dense
blocks to retrieve the any-k samples. Further, by storing block-
level statistics rather than record-level statistics, DENSITYMAPs
can greatly reduce the amount of indexing space required compared
to bitmaps. In fact, DENSITYMAPs can be thought of a form of
lossy compression. Overall, by storing density-based information
at the block level, we benefit from smaller size and more relevant
information tailored to the any-k sampling problem.

Formally, for each attribute Ai, and each attribute value taken on
by Ai, V j

i , we store a DENSITYMAP D j
i , consisting of λ entries,

one corresponding to each block on disk. We can express D j
i as

{d j
i1 ,d

j
i2 , ..,d

j
ik , ..,d

j
iλ
}, where d j

ik is the percentage of tuples in block

k that satisfy the predicate Ai =V j
i . Note that while DENSITYMAPs

are stored per column, the actual underlying data is assumed to be
stored in row-oriented fashion.

EXAMPLE 1. The table in Figure 1 is stored over 9 blocks. The
density map D1

1 for V 1
1 is {0.2,0.1,0.3,0.4,0.5,0.7,0.8,0.9,0}, in-
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Figure 1: DensityMaps

dicating 20 percent of tuples in block 1 and 10 percent of tuples in
block 2 have value V 1

1 for attribute A1 respectively.

DENSITYMAPs are a very flexible index structure as they can
estimate the percentage of valid records for any ad-hoc query with
single or nested selection constraints. For queries with more than
one predicate, we can combine multiple DENSITYMAPs together
to calculate the estimated percentage of valid records per block,
multiplying densities for conjunction and adding them for disjunc-
tion. In performing this estimation, we implicitly assume that the
DENSITYMAPs are independent, akin to selectivity estimation in
query optimization [25]. As in query optimization, this assump-
tion may not always hold, but as we demonstrate in our experi-
ments on real datasets, it still leads to effective results. In par-
ticular, DENSITYMAPs drastically reduce the number of disk ac-
cesses by skipping blocks whose estimated densities are zero (and
thus definitely do not contain valid records). Some readers may be
reminded of other statistics used for query optimization, such as
histograms [25]. However, unlike histograms which store the over-
all frequencies of records for entire relations, DENSITYMAPs store
this information at a finer block-level granularity.

EXAMPLE 2. In Figure 1, for a given query Q with selection
constraints A1 = V 1

1 AND A2 = V 2
2 , the estimated DENSITYMAP af-

ter combing D1
1 and D2

2 is {0.02,0.03,0,0.36,0.3,0.49,0.08,0.72,0},
indicating (approximately) that block 1 has 2 percent matching
records, and block 2 has 3 percent matching records for Q.

Thus, compared to bitmaps, DENSITYMAPs are a coarser sta-
tistical summary of valid records in each block for each attribute
value. DENSITYMAPs save significant storage costs by keeping in-
formation at the block-level instead of record-level, making main-
taining DENSITYMAPs in memory feasible. Moreover, coupled
with efficient algorithms, which we describe in detail next, DEN-
SITYMAPs can decrease the number of blocks read from disk for
any-k sampling and therefore reduce the query execution time.

One concern with DENSITYMAP is that, since we admit all records
from a block which satisfy the constraints into our any-k sample set,
the samples we retrieve may be biased with respect to the data lay-
out. In Section 6, we describe techniques to correct the bias due
to possible correlations between the samples and the data layout by
applying cluster sampling and unequal probability estimation tech-
niques.

4. ANY-K ALGORITHMS: EXTREMES
We introduce two algorithms which take advantage of our DEN-

SITYMAPs to perform fast any-k sampling. The primary insights
for these algorithms come from the following two observations.
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First, a high density block has more valid records than a low
density block. Thus, it is more beneficial to retrieve the high density
block, so that overall, fewer blocks are retrieved.

OBSERVATION 1 (DENSITY: DENSER IS BETTER.). Under the
same circumstances, retrieving a block with high density is prefer-
able to retrieving a low density block.

In a HDD, the time taken to retrieve a block from disk can be split
into seek time and transfer time. The seek time is the time it takes to
locate the desired block, and the transfer time is the time required to
actually transfer the bytes of data in the block from the HDD to the
operating system. Blocks which are far apart incur additional seek
time, while neighboring blocks typically only require transfer time.
Thus, retrieving neighboring blocks is preferred. Similar locality
arguments hold (to varying degrees) on SSD and RAM.

OBSERVATION 2 (LOCALITY: CLOSER IS BETTER). Under the
same circumstances, retrieving neighboring blocks is preferable to
retrieving blocks which are far apart.

Our basic any-k sampling algorithms take advantage of each of
these observations: DENSITY-OPTIMAL optimizes for density while
LOCALITY-OPTIMAL optimizes for locality. These two algorithms
are optimal extremes, favoring just one of locality or density.

On different types of storage media, the two observations can
have different amounts of impact. For example, the locality obser-
vation may not be as important for in-memory data and solid-state
drives (SSDs), since the random I/O performance of these storage
media is not as poor as it is on HDDs. For our purposes, we focus
on the HDDs, which is the most common type of storage device,
but we also evaluate our techniques on SSDs.

To judge which of these two algorithms is better in a given set-
ting, or to combine the benefits of these two algorithms, we require
a cost model for storage media, which we present in Section 5.

Table 1 provides a summary of the notation used in the following
sections.

Symbol Meaning
λ Number of blocks
γ Number of predicates
τ Number of samples received
κ An empirical constant to sequentially access one block

S = {S1,S2, · · · ,Sγ} DENSITYMAP indicated in the WHERE clause
S j[i] the ith entry of DENSITYMAP S j

Ŝ = {Ŝ1, Ŝ2, · · · , Ŝγ} Sorted DENSITYMAP indicated in the WHERE clause
Ŝi[ j] the jth entry of the ith sorted DENSITYMAP in Ŝ

θ Threshold
M Set of block IDs with their aggregated densities

Seen Set of block IDs seen so far
R Set of block IDs returned by the algorithm

Table 1: Table of Notation

4.1 DENSITY-OPTIMAL Algorithm
DENSITY-OPTIMAL is based on the threshold algorithm pro-

posed by Fagin et al. [23]. The goal of DENSITY-OPTIMAL is
to use our in-memory DENSITYMAP index to retrieve the densest
blocks until k valid records are found. The unmodified threshold al-
gorithm by Fagin et al. would attempt to find the p densest blocks.
However, in our setting, we do not know the value of p in advance:
we only know k, the number of valid tuples required, so we need to
set the value of p on the fly.

For fast execution of DENSITY-OPTIMAL, an additional sorted
DENSITYMAP data structure is required. For every DENSITYMAP
D, we sort it in descending order of densities to create a sorted
DENSITYMAP D̂. Every element D̂[i] has two attributes: bid, the
block ID, and density, the percentage of tuples in this block which
satisfies the corresponding constraint. Here D[1] refers to the first
block of the data and D̂[1] refers to the densest block in the data.
Sorted DENSITYMAPs are precomputed during data loading time

and stored in memory along with the DENSITYMAPs, so the sorting
time does not affect the execution times of queries.
High-Level Intuition. At a high level, the algorithm examines
each of the relevant sorted DENSITYMAPs corresponding to the
predicates in the query. It traverses these sorted DENSITYMAPs
in sorted order, while maintaining a record of the blocks with the
highest overall density for the query, i.e., the highest number of
valid tuples. The algorithm stops when the maintained blocks have
at least k valid records, and it is guaranteed that none of the un-
explored blocks can have a higher overall density than the ones
maintained.
Algorithmic Details. Algorithm 1 provides the full pseudocode.
With sorted DENSITYMAPs, it is easy to see how DENSITY-OPTIMAL

handles a query with a single predicate: Ai =V j
i . DENSITY-OPTIMAL

simply selects the D̂ j
i which corresponds to the predicate and re-

trieves the first few blocks of D̂ j
i until k valid records are found. For

multiple predicates, the execution of DENSITY-OPTIMAL is more
complicated. Depending on how the predicates are combined,

⊕
could mean ∏, i.e., product, if the predicates are all combined us-
ing ANDs, or ∑, i.e., sum, if the predicates are all combined us-
ing ORs. Each DENSITYMAP in {S1, ...,Sγ} represents a predicate
from the query, while {Ŝ1, ..., Ŝγ} represent the sorted variants. At
each iteration, we traverse down Ŝi, while maintaining a running
threshold θ =

⊕γ

j=1 Ŝ j[i].density, and also keeping track of all the
block ids encountered across the sorted density maps. This thresh-
old θ represents the minimum aggregate density that a block must
have across the predicates before we are sure that it is one of the
densest blocks. During iteration i, we consider all blocks in M ex-
amined in the previous iterations that have not yet been selected to
be part of the output. If the one with the highest density has density
greater than θ , then it is added to the output R. We know that θ is an
upper-bound for any blocks that have not already been seen in this
or the previous iterations, due to the monotonicity of the operator⊕

. Thus, DENSITY-OPTIMAL maintains the following invariant: a
block is selected to be part of the output iff its density is as good or
better than any of the blocks that not yet been selected to be part of
the output. Overall, DENSITY-OPTIMAL ends up adding the blocks
to the output in decreasing order of density. DENSITY-OPTIMAL
terminates when the number of valid records in the output blocks
selected is at least k.

To retrieve the any-k samples, we then load the blocks returned
by DENSITY-OPTIMAL into memory and return all valid records
seen in those blocks. If the total number of query results in those
blocks are less than k, we re-execute DENSITY-OPTIMAL on the
blocks that have not been retrieved in previous invocations.
Fetch Optimization. Depending on the order of the blocks returned
by DENSITY-OPTIMAL, the system may perform many unneces-
sary random I/O operations. For example, if DENSITY-OPTIMAL
returns blocks {B100,B1,B83,B3}, the system may read block B100,
seek to block B1, and then seek back to block B83, resulting in ex-
pensive disk seeks. Instead, we can sort the blocks {B1,B3,B83,B100}
before fetching them from disk, thereby minimizing random I/O
and overall query execution time.
Guarantees. We now show that DENSITY-OPTIMAL retrieves the
minimum set of blocks when optimizing for density.

THEOREM 1 (DENSITY OPTIMALITY). Under the indepen-
dence assumption, DENSITY-OPTIMAL returns the set of blocks
with the highest densities with at least k valid records.

Since DENSITY-OPTIMAL is a significant modification of the thresh-
old algorithm the proof of the above theorem does not follow di-
rectly from prior work.

4



Algorithm 1 DENSITY-OPTIMAL

1: Initialize θ ← 0, i← 1, τ ← 0, R,M,Seen←∅
2: while i≤ λ do

3: θ ←
γ⊕

j=1

Ŝ j[i].density

4: for j = 1 . . .γ do
5: if Ŝ j[i].bid /∈ Seen then
6: ρ ← Ŝ j[i].bid

7: ξ ←
{

bid : ρ

density :
⊕γ

k=1 Sk[ρ].density
8: M←M∪{ξ}
9: Seen← Seen∪{ρ}

10: µ ← argmaxµ ′∈M µ ′.density
11: while µ ≥ θ do
12: τ ← τ +µ.density× records_per_block
13: R← R∪{µ.bid}
14: M←M \{µ}
15: if τ ≥ k then
16: return R
17: else
18: µ ← argmaxµ ′∈M µ ′.density

19: i← i+1
20: return R

PROOF. The proof is composed of two parts: first, we demon-
strate that DENSITY-OPTIMAL adds blocks to R in the order of
decreasing overall density; second, we demonstrate that DENSITY-
OPTIMAL stops only when the number of valid records in R is ≥ k.
The second part is obvious from the pseudocode (line 16). We
focus on the first part. The first part is proven using an inductive ar-
gument. We assume that the blocks added to R through ith iteration
satisfy the property and that θ of the ith iteration is denoted as θi.
We note that for the i+1th iteration, θi ≥ θi+1. Consider the blocks
that are part of M at the end of line 10 in the i+1th iteration. These
blocks fall into two categories: either they were already part of M
in the ith iteration, and hence have densities less than θi, or were
added to M in the i+ 1th iteration, and due to monotonicity, once
again have density less than θi. Furthermore, any blocks that have
not yet been examined will have densities less than θi+1. Since all
blocks that have been added at iteration i or prior have densities
greater than or equal to θi, all the blocks still under contention for
adding to R—those in M or those yet to be examined—have den-
sities below those in R. Now, in iteration i+ 1, we add all blocks
in M whose densities are greater than θi+1, in decreasing order.
We know that all of these blocks have higher densities than all the
blocks that have yet to be examined (once again using monotonic-
ity). Thus, we have shown that any blocks added to R in iteration
i+ 1 are lower in terms of density than those added to R previ-
ously, and are the best among the ones in M and those that will be
encountered in future iterations.

4.2 LOCALITY-OPTIMAL Algorithm
Our second algorithm, LOCALITY-OPTIMAL, prioritizes for lo-

cality rather than density, aiming to identify the shortest sequence
of blocks that guarantee k valid records. The naive approach to
identify this would be to consider the sequence formed by every
pair of blocks (along with all of the blocks in between)—leading
to an algorithm that is quadratic in the number of blocks. Instead,
LOCALITY-OPTIMAL, described below, is linear in the number of
blocks.

High-level Intuition. LOCALITY-OPTIMAL moves across the se-
quence of blocks using a sliding window formed using a start and
an end pointer, and eventually returns the smallest possible window

with k valid records. At each point, LOCALITY-OPTIMAL ensures
that the window has at least k valid records within it, by first ad-
vancing the end pointer until we meet the constraint, then advanc-
ing the start pointer until the constraint is once again violated. It
can be shown that this approach considers all minimal sequences of
blocks with k valid records. Subsequently, LOCALITY-OPTIMAL
returns the smallest such sequence.

Algorithmic Details. The pseudocode for the algorithm is listed in
Algorithm 2. The LOCALITY-OPTIMAL algorithm operates on an
array of values formed by applying the operator

⊕
to the predicate

DENSITYMAPs {S1, ..,Sγ}, one block at a time. At the start, both
pointers are at the value corresponding to the density of the first
block. We move the end pointer to the right until the number of
valid records between the two pointers is no less than k; at this
point, we have our first candidate sequence containing at least k
valid records. We then move the start pointer to the right, checking
if each sequence contains at least k valid records, and continuing
until the constraint of having at least k valid records is once again
violated. Afterwards, we once again operate on the end pointer. At
all times, we maintain the smallest sequence found so far, replacing
it when we find a new sequence that is smaller.

Algorithm 2 LOCALITY-OPTIMAL

1: Initialize τ ← 0, R←∅
2: Initialize start,end,min_start,min_end← 1
3: for i = 1 . . .λ do

4: M[i]←
{

bid : i
density :

⊕γ

j=1 S j[i].density

5: while end < λ do
6: while τ < k and end < λ do
7: τ ← τ +M[end].density× records_per_block
8: end← end +1
9: while τ ≥ k and start < λ do

10: if (end− start)< (min_end−min_start) then
11: min_end← end
12: min_start← start
13: τ ← τ−M[start].density× records_per_block
14: start← start +1
15: R←

⋃
min_start≤i<min_end{i}

16: return R

Guarantees. We now show that LOCALITY-OPTIMAL retrieves the mini-
mum sequence of blocks when optimizing for locality.

THEOREM 2 (LOCALITY OPTIMALITY). Under the independence as-
sumption, LOCALITY-OPTIMAL returns the smallest sequence of blocks
that contains at least k valid records.

We demonstrate that for every block i, LOCALITY-OPTIMAL considers the
smallest sequence of blocks with k valid records beginning at block i at
some point in the algorithm, thereby proving the above theorem.

PROOF. For i = 1, this is easy to see. The end pointer of LOCALITY-
OPTIMAL starts at 1 and increases; the start pointer is not moved until a
valid sequence of blocks is found, so by construction LOCALITY-OPTIMAL
considers the smallest sequence of blocks starting at 1. For the remaining
i’s we prove this by contradiction. Let the smallest sequence of blocks
beginning at block i end at j, where j ≥ i; we denote this sequence as [i, j].
Now, let j′ be the ending block for the smallest sequence of blocks starting
at i+ 1; this sequence is denoted as [i+ 1, j′]. If j′ ≥ j, our LOCALITY-
OPTIMAL algorithm considers the sequence as we move the end pointer
forward (lines 6-8 in the pseudocode). Assume to the contrary that j′ =
j− 1 < j; that is, the sequence [i+ 1, j− 1] is the smallest sequence of
blocks starting at i+1 that has k valid records. [i+1, j−1] is a subsequence
of [i, j−1], so [i, j−1] must also have at least k valid records. However, we
already declared [i, j] to be the smallest sequence of blocks starting at i that
has k valid records, and thus a contradiction is found. Similar arguments
can be made for all j′ < j−1, so LOCALITY-OPTIMAL must consider the
smallest sequence of blocks starting at block i for every i.

5
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Figure 2: I/O Cost Model for HDDs and SSDs

5. HYBRID ANY-K ALGORITHMS
The two desired properties of density and locality can often be at odds

with each other depending on the data layout; dense blocks may be far
apart, and neighboring blocks may contain many blocks which have no
valid records. In this section, we first present a cost model to estimate
the I/O cost of a any-k algorithm, and use it to design an any-k algorithm
that is I/O-optimal, providing the best balance between density and local-
ity, and a hybrid algorithm, that selects between DENSITY-OPTIMAL and
LOCALITY-OPTIMAL.

5.1 A Simple I/O Cost Model
To set up the cost model for I/O for HDDs (Hard Disk Drives), we pro-

file the storage system as described by Ruemmler et al. [47]. We ran-
domly choose various starting blocks and record the time taken to fetch
other blocks that are varying distances away (where distance is measured in
number of blocks), for distance onwards. As shown in Figure 2, which uses
a linear scale on the x-axis from x=2 until x=10, and then logarithmic scale
after that, we observe that with block size equal to 256KB, the I/O cost is
smallest when doing a sequential I/O operation to fetch the next block (∼
2ms), and increases with the distance up to a certain maximum distance t
after which it becomes constant (∼ 12ms). We have overlaid our cost model
estimate using a dashed blue line. More formally, for two blocks i and j,
we model the cost of fetching block j after block i as follows:

RandIO(i, j) =

{
cost(i, j) if | j− i| ≤ t
constant otherwise

w

When distance is less than t, we use a simple linear fit for cost(i, j), using
the Python numpy.polyfit function5

On the other hand, as shown in Figure 2, the I/O Cost Model for SSDs
is different from the one we see for HDDs. Overall, we see a constant time
(∼ 0.6ms) to fetch a block (overlaid in a dashed blue line) independent of
the block distance.

5.2 IO-OPTIMAL Algorithm
IO-OPTIMAL considers both density and locality to search for the set of

blocks that will provide the minimum I/O cost overall. Specifically, given
our cost model, we can use dynamic programming to find the optimal set of
blocks with k valid records.

We define C(s, i) as the minimal cost to retrieve s estimated valid records
when block i is amongst the blocks fetched. We define Opt(s, i) as the cost
to retrieve the optimal set of blocks with s estimated valid records when
considering the first i blocks. Finally, we denote si as the estimated number
of valid records inside block i, derived, as before, using the

⊕
computation.

With this notation, we have:

C(s, i) = min
{

C(s− si, j)+RandIO( j, i), ∀ j ∈ [ i− t, i−1]
Opt(s− si, i− t−1)+RandIO(i− t−1, i)

Opt(s, i) = min
{

C(s, i)
Opt(s, i−1)

The intuition is as follows: for each block i that has si estimated valid
records, either the block can be in the final optimal set or not. If we de-
cide to include block i, the cost is the minimum cost amongst the following:
5https://docs.scipy.org/doc/numpy/reference/generated/
numpy.polyfit.html

(i) the smallest I/O cost of having s−si samples at block j where |i− j| ≤ t,
plus the cost of jumping from block j to i (i.e., C(s− si, j)+RandIO( j, i)),
or (ii) the optimal cost at block i− t−1, plus the random I/O cost of jump-
ing from some block in the first i− t − 1 blocks to block i (i.e., Opt(s−
si, i− t−1)+RandIO(i− t−1, i)).

For the second expression, if we exclude block i, then the optimal cost
is the same as the optimal cost at block i− 1. Consequently, the optimal
cost at block i is the smallest value in these two cases. The full algorithm
is shown in Algorithm 3, where κ is some constant cost to fetch the first
block.

Algorithm 3 IO-OPTIMAL

1: Initialize R←∅.
2: for i = 1 . . .λ do

3: M[i]←
{

bid : i
density :

⊕γ

j=1 S j[i].density
4: si ← M[i].density× records_per_block
5: for s = 0 . . . s1 do
6: C(s,1)← κ

7: Opt(s,1)← κ

8: for s = s1 +1, . . . ,k do
9: C(s,1)← ∞

10: Opt(s,1)← ∞

11: for i = 2 . . . λ do
12: for s = 0 . . . si do
13: C(s, i)← RandIO(1, i)
14: Opt(s, i)←min{Opt(s, i−1),C(s, i)}
15: for j = si +1, . . . ,k do

16: C(s, i)←min
{

C(s− si, j)+RandIO( j, i),∀ j ∈ [ i− t, i−1]
Opt(s− si, i− t−1)+RandIO(i− t−1, i)

17: Opt(s, i)←min{Opt(s, i−1),C(s, i)}
18: R← sequence of blocks that result the cost in Opt(k,λ )
19: return R

Guarantees. We can show the following property.

THEOREM 3 (IO-OPTIMAL). Under the independence assumption and
the constructed cost model for disk I/O, IO-OPTIMAL gives the blocks with
optimal I/O cost for fetching any-k valid records.

The proof is listed in full detail in Appendix A.1.

5.3 HYBRID Algorithm
Even though IO-OPTIMAL is able to return the optimal I/O cost for

fetching any-k samples, its much higher computation cost (as we show in
our experiments) makes it impractical for large datasets. We propose HY-
BRID which simply selects between the best of DENSITY-OPTIMAL and
LOCALITY-OPTIMAL, using our I/O cost model, when a query is issued.
Since HYBRID needs to run both algorithms to determine the set of blocks
selected by each algorithm, using HYBRID would involve a higher up-front
computational cost, but as we will see, leads to substantial performance
benefits.

6. AGGREGATE ESTIMATION
So far, our any-k algorithms retrieve k records without any consideration

of how representative they are of the entire population of valid records. If
these records are used to estimate an aggregate (e.g., a mean), there could
be bias in this value due to possible correlations between the value and
the data layout. While this is fine for browsing, it leaves the user unable
to make any statistically significant claims about the aggregated value. To
address this problem, we make two simple adjustments to extend our any-
k algorithms. First, we introduce a TWO-PHASE sampling scheme where
we add small amounts of random data to our any-k estimates. This random
data is added in a fashion such that it does not significantly affect the overall
running time, while at the same time, allowing us to “correct for” the bias
easily. Second, we correct the bias by leveraging techniques from the survey
sampling literature. Specifically, we leverage the Horvitz-Thompson [31]
and ratio [42] estimators, as described below. Note that such approaches
have been employed in other settings in approximate query processing [44,
41, 21, 32, 36], but their application to any-k is new.
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6.1 TWO-PHASE Sampling
We propose a TWO-PHASE sampling scheme, in which we collect a large

portion of the k requested samples using an any-k algorithm, and collect
the rest in a random fashion. We denote (1−α) as the proportion of k
samples we retrieve using the any-k algorithm, and α as the proportion
of k samples we retrieve using random sampling. The user chooses the
parameter α upfront based on how much random sampling they wish to
add. While a larger α may reduce the number of total samples needed to
obtain a statistically significant result, the time taken to retrieve random
samples greatly exceeds the time taken to retrieve samples based on our
any-k algorithms. Therefore, α needs to be carefully chosen; we experiment
with different αs in Section 9.

More formally, if we let Sv be the set of blocks which have at least one
valid record in them, we can describe TWO-PHASE sampling as follows:
(1) Use an any-k algorithm to choose the densest blocks Sc from Sv, and
derive (1−α)k samples from Sc. (2) Uniformly randomly select blocks
Sr from the remaining blocks, and derive α samples from Sr . Note that
Sc ∩Sr =∅.

6.2 Unequal Probability Estimation
Within the TWO-PHASE sampling scheme, the probability a block is

sampled is not uniform. Therefore, we must use an unequal probability es-
timator [56] and inversely weigh samples based on their selection probabili-
ties. We introduce two different estimators for this: the Horvitz-Thompson
estimator and the ratio estimator.

6.2.1 Requisite Notation
The goal of our two estimators is to estimate the true aggregate sum τ and

the true aggregate mean µ of measure attribute M given a query Q. We use
τi to denote the aggregate sum of M for block i and L for the total number
of valid records for query Q. We can estimate L using the DENSITYMAPs.

The estimators inversely weigh samples based on their probability of
selection. So, we define the inclusion probability πi as the probability that
block i is included in the overall sample:

πi =


1 if i ∈ Sc
|Sr |

|Sv|−|Sc | if i ∈ Sv \Sc

0 otherwise

For the (1−α)k samples that come from the any-k blocks in Sc, the prob-
ability of being chosen is always 1. After these blocks have been selected,
a uniformly random subset of the remaining blocks are chosen to produce
the αk random samples; thus the probability that these samples are chosen
is |Sr |
|Sv |−|Sc | .
We define the joint inclusion probability πi j as the probability of select-

ing both blocks i and j for the overall sample:

πi j =


1 if i ∈ Sc ∧ j ∈ Sc
|Sr |

|Sv |−|Sc | if (i ∈ Sc ∧ j ∈ Sr)∨ (i ∈ Sr ∧ j ∈ Sc)
|Sr |

|Sv |−|Sc |
|Sr |−1

|Sv |−|Sc|−1 if i ∈ Sr ∧ j ∈ Sr

0 otherwise

6.2.2 Horvitz-Thompson Estimator
Using the Horvitz-Thompson [31] estimator, τ is estimated as:

τ̂HT = ∑
i∈Sc

τi

πi
+ ∑

i∈Sr

τi

πi
(1)

As mentioned before, the sums τi are inversely weighted by their prob-
abilities πi to account for the different probabilities of selecting blocks in
Sv. Based on τ̂HT , we can also easily estimate µ by dividing the size of the
population:

µ̂HT =
τ̂HT

L
(2)

The Horvitz-Thompson estimator guarantees us that both τ̂HT and µ̂HT
are unbiased estimates: E(τ̂HT ) = τ and E(µ̂HT ) = µ . A full proof can be
found in [31]. In addition, the Horvitz-Thompson estimator gives us a way
to calculate the variances of of τ̂HT and µ̂HT , which represent the expected
bounds of τ̂HT and µ̂HT :

Var(τ̂HT ) = ∑
i∈Sv

(
1−πi

πi

)
τ

2
i + ∑

i∈Sv

∑
j 6=i

(
πi j−πiπ j

πiπ j

)
τiτ j (3)

Var(µ̂HT ) =Var(τ̂HT /L) =Var(τ̂HT )/L2 (4)

6.2.3 Ratio Estimator
Although the Horvitz-Thompson estimator is an unbiased estimator, it is

possible that the variances given by Equations 3 and 4 can be quite large if
the aggregated variable is not well related to the inclusion probabilities [56].
To reduce the variance, the ratio estimator [42] may be used:

µ̂R =
τ̂HT

∑i∈Sc∪Sr
Li
πi

(5)

τ̂R = µ̂RL (6)

where Li is the number of valid records in block i. The variances of µ̂R and
τ̂R are given by:

Var(µ̂R) =
1
L2

[
∑

i∈Sv

(
1−πi

πi

)
(τi−µ)2

+ ∑
i∈Sv

∑
j 6=i

(
πi j−πiπ j

πiπ j

)
(τi−µ)(τ j−µ)

]
(7)

Var(τ̂R) =Var(µ̂RL) = L2Var(µ̂R) (8)

While the ratio estimator is not precisely unbiased, in Equation 5, we see
that the numerator is the unbiased Horvitz-Thompson estimate of the sum
and the denominator is an unbiased Horvitz-Thompson estimate of the total
number of valid records, so the bias tends to be small and decreases with
increasing sample size.

We compare the empirical accuracies of these two estimators in Sec-
tion 9, and demonstrate how our TWO-PHASE sampling technique, when
employing these estimators, provides accurate estimates of various aggre-
gates values.

7. GROUPING AND JOINS
So far, we have assumed that all our sampling queries have the form dic-

tated by the SELECT query given in Section 2, thus limiting our operations
to a single database table, with simple selection predicates and no group-by
operators. We now extend the any-k sampling problem formulation and our
algorithms to handle more complex queries that involve grouping and join
operations.

7.1 Supporting Grouping
Rather than computing a simple any-k, users may want to retrieve k val-

ues per group, e.g., to compute an estimate of an aggregate value in each
group.

Although a trivial way to do this would be to run a separate any-k query
per group, in this section we discuss an algorithm that can share the com-
putation across groups in the common case when users want k values per
group.

Consider an any-k query Qk over a table T with S representing the pred-
icate in the where clause. Let AG be the grouping attribute with values in
{V 1

G,V
2
G, . . . ,V

δG
G }. The formal goal of this grouped any-k sampling can be

stated as:

PROBLEM 2 (GROUPED ANY-k SAMPLING). Given a query Qk de-
fined by a predicate S on table T , and a grouping attribute AG, the goal
of grouped any-k sampling is to retrieve any k valid records for each group
in as little time as possible.

Our basic approach is to create a combined density map, which takes into
account every group in the group-by operation, and run the any-k algorithm
for all groups at once. This is akin to sharing scans in traditional databases.

In order to run our any-k algorithms for all groups, we first define the
combined density of the lth block as multiplication of two factors: (1) the
density of the lth block with respect to predicate S, and (2) the sum of
the densities for group values in AG in the lth block which still need to be
sampled. The first factor has been discussed previously, while the second
factor can be defined as:

d∗Gl
=

1
RPB

δG

∑
j=1

min
(

k− r j
G , d j

Gl
×RPB

)
(9)

where RPB is records_per_block, r j
G is the number of samples already re-

trieved for group V j
G, and d j

Gl
is the density of the lth block for the value V j

G.
The expression inside the min function estimates the number of expected
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records in block l for each group V j
G, but limits the estimate by the number

of samples left to be retrieved for that group6. Thus, the combined density
(dSl d

∗
Gl

), where dSl is the density of the lth block with respect to predicate
S, gives priority to groups which have had fewer than k samples retrieved
so far, and groups which already have k samples no longer contribute to
the combined density. The 1/RPB in front of the summation for d∗Gl

acts a
normalization factor to ensure that d∗Gl

, and thereby dSl d
∗
Gl

, are both density
values between 0 and 1.

With this combined density estimate dSl d
∗
Gl

, we can now construct an
iterative any-k algorithm for grouped sampling operations, similar to the
algorithms in Sections 4 and 5. The main structure of the algorithm is as
follows: (1) Update all densities using with dSl d

∗
Gl

. (2) Run one of the
any-k algorithms to retrieve ψ blocks with the highest combined density.
(3) Update the densities of the ψ blocks as 0. (4) If k samples still have not
been retrieved for each group, go back to step (1). Since d∗Gl

depends on
the number of samples already retrieved, it must be updated periodically to
ensure the correctness of the combined densities. The ψ parameter controls
the periodicity of these updates. The problem of setting ψ becomes a trade-
off between CPU time and I/O time. Setting ψ = 1 updates the densities
after every block retrieval; while this more correctly prioritizes blocks and
is likely to lead to fewer blocks retrieved overall, there is a high CPU cost
in updating the densities after each block retrieval. As ψ increases, the
CPU cost goes down due to less frequent updates, but the overall I/O cost is
likely to go up since the combined densities are not completely up-to-date
for each block retrieved. Although our iterative algorithm is not particularly
complex, and globally IO-optimal solutions may perform better than our
locally optimal solution, our algorithm has the advantage of simplicity of
implementation and likely lower CPU overhead. We defer consideration of
more sophisticated algorithms to future work.

Algorithm Details. The full algorithm for the grouping any-k query is
shown in Algorithm 4. In Section 4, τ was a single value representing the
number of samples retrieved; for the grouping any-k algorithm, τ is now an
array of size δG where each entry represents the number of samples for that
group. Every iteration consists of updating the combined density estimates
or the priorities of blocks M based on the number of samples retrieved
(setting it to 0 if it has already been seen), and calling an any-k algorithm
with M and the number of blocks desired ψ . The algorithm updates the
counts of τ and the algorithm only ends once every entry in τ is at least k.

Algorithm 4 Group-by any-k algorithm.

1: Initialize τ ← [0, ...,0], R,M←∅
2: while ∃ j ∈ {1, ...,δG}, τ[ j]< k do
3: for i = 1 . . .λ do
4: if i ∈ R then
5: M[i]←

{
bid : i
density : 0

6: else

7: M[i]←

{
bid : i
density : dSi ∑

δG
j=1 d∗Gi

8: R′← any-k(M,ψ)
9: for r ∈ R′ do

10: for j ∈ {1, ...,δG} do
11: τ[ j]← τ[ j]+dSr d j

Gr
× records_per_block

12: R← R∪R′

13: return R

As we show in the next section, the key-foreign key join any-k problem
is essentially equivalent to this grouped any-k formulation, and we evaluate
the performance of our algorithm on these problems in Section 9.7.

Optimal Solution. As mentioned, the grouping any-k solution uses a heuris-
tic to find the best blocks to retrieve. However, an I/O optimal solution,
similar to IO-OPTIMAL from Section 5.2, could be derived using dynamic
programming with a recursive relationship based on the notion of priority
from Equation 9, τ , and the disk model from Section 5.2. Unfortunately,
the resulting dynamic programming solution becomes a complex program
of even more dimensions than the program from Section 5.2. Since we al-
ready showed in Section 9 that IO-OPTIMAL incurs a prohibitively high

6r j
G is never greater than k, so the k− r j

G expression cannot be negative.

CPU cost in exchange for its optimal I/O time, we chose not to pursue this
avenue.
Multiple Groupings. For multiple group-by attributes, we simply extend
the above formula to account for every possible combination of values
from the different groupings. For example, if we have two group-by at-
tributes AG and AG′ , we can specify our updated notion of density with

dSl ∑
δG
j=1 ∑

δG′
i=1 d∗Gl

d∗G′ l .

7.2 Supporting Key-Foreign Key Joins
Consider any-k sampling on the result of a key-foreign key join between

two tables T and T ′, where AJ is the primary key in T , and AJ′ is the foreign
key in T ′. Similar to grouping, the formal definition of join any-k sampling
can be defined as:

PROBLEM 3 (JOIN ANY-k SAMPLING). Given a query Qk defined by
a predicate S and a join over tables T and T ′, on primary key AJ from table
T and foreign key AJ′ from table T ′, the goal of join any-k sampling is to
retrieve any k valid joined records for each join value in as little time as
possible.

For example, if we want to join on a “departments” attribute, k samples
would be retrieved for each department.

Since we assume AJ is the primary key, and therefore unique, the join
any-k sampling problem can be reduced to finding any k valid records in
table T ′ for each join value VJ ∈ AJ . However, this is the exact same prob-
lem as the grouped any-k sampling problem in which the group values are
VJ ∈ AJ . Thus, we can use the algorithm described in the previous section,
using the values of AJ as the grouping value on the foreign key table T ′.

In this way, NEEDLETAIL is able to best indicate the blocks that can be
retrieved to minimize the overall time for joins. We evaluate our join any-k
algorithm in Section 9.7. We leave optimizations for other join variants as
future work.
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Figure 3: NEEDLETAIL Architecture

We implemented our DENSITYMAPs, any-k algorithms, and aggregate
estimators in a system called NEEDLETAIL. NEEDLETAIL is developed as
a standalone browsing-based data exploration engine, capable of returning
individual records as well as estimating aggregates. NEEDLETAIL can be
invoked by various frontends, e.g., SQL IDEs or interfaces such as Tableau
or Excel. Figure 3 depicts the overall architecture of NEEDLETAIL. It in-
cludes four major components: the any-k module, the random sampling
module, the index, and the disk access module. The any-k module receives
queries from the user and executes our any-k algorithms from Sections 4, 5,
and 7 to return any-k browsing samples as quickly as possible. For aggre-
gate queries, the random sampling module is used in conjunction with the
any-k module to perform the TWO-PHASE sampling from Section 6. The
index contains the DENSITYMAPs and sorted DENSITYMAPs. Finally, the
disk access module is in charge of interacting with the buffer pool to re-
trieve blocks from disk. Since DENSITYMAPs are a lossy compression of
the original bitmaps, it is possible that some blocks with no valid records
may be returned; these blocks are filtered out by the disk access module.

Our NEEDLETAIL prototype is currently implemented in C++ using about
5000 lines of code. It is capable of reading in row-oriented databases with
int, float, and varchar types and supports Boolean-logic predicates. Al-
though the current implementation is limited to a single machine, we plan to
extend NEEDLETAIL to run in a distributed environment in the future. We
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believe the collective memory space available in a distributed environment
will allow us to leverage the DENSITYMAPs in even better ways.

9. PERFORMANCE EVALUATION
In this section, we evaluate NEEDLETAIL, focusing on runtime, memory

consumption, and accuracy of estimates. We show that our DENSITYMAP-
based any-k algorithms outperform any “first-to-k-samples” algorithms us-
ing traditional OLAP indexing structures such as bitmaps or compressed
bitmaps on a variety of synthetic and real datasets. In addition, we em-
pirically demonstrate that our TWO-PHASE sampling scheme is capable
of achieving as accurate an aggregate estimation as random sampling in a
fraction of the time. Then, we demonstrate that our join any-k algorithms
provide substantial speedups for key-foreign key joins. We conclude the
section with an exploration into the effects of different parameters on our
any-k algorithms.

9.1 Experimental Settings
We now describe our experimental workload, the evaluated algorithms,

and the experimental setup.
Synthetic Workload: We generated 10 clustered synthetic datasets using
the data generation model described by Anh and Moffat [11]. Every syn-
thetic dataset has 100 million records, 8 dimension attributes, and 2 measure
attributes. For the sake of simplicity, we forced every dimension attribute to
be binary (i.e., valid values were either 0 or 1), and with measure attributes
being sampled from normal distributions, independent of the dimension at-
tributes. For each dimension attribute, we enforced an overall density of
10%; the number of 1’s for any attribute was 10% of the overall number of
records. Since we randomly generated the clusters of 1’s in each attribute
value, we ran queries with equality-based predicates on the first two dimen-
sional attributes (i.e., A1 = 0 and A2 = 1). Note that this does not always
result in a selectivity of 10% since the records whose A1 = 0 may not have
A2 = 1.
Real Workload: We also used two real datasets.
• Airline Dataset [1]: This dataset contained the details of all flights

within the USA from 1987–2008, sorted based on time. It consisted
of 123 million rows and 11 attributes with a total size of 11 GB. We
ran 5 queries with 1 to 3 predicates on attributes such as origin airport,
destination airport, flight-carrier, month, day of week. For our experi-
ments on error (described later), we estimated the average arrival delay,
average departure delay, and average elapsed time for flights.

• NYC Taxi Dataset [5]: This dataset contained logs for a variety of taxi
companies in New York City for the years 2014 and 2015. The dataset
as provided was first sorted by the year; within each year, it was first
sorted on the three taxi types and then on time. It consisted of 253 mil-
lion rows and 11 attributes with a total size of 21 GB. We ran 5 queries
with 1 to 2 predicates on attributes including pickup location, dropoff
location, time slots, month, passenger count, vendors, and taxi type.
For our experiments on error, we estimated the average fare amount and
average distance traveled for the chosen trips.

Algorithms: We evaluated the performance of the three any-k algorithms
presented in Section 4 and 5: (i) IO-OPTIMAL, (ii) DENSITY-OPTIMAL,
(iii) LOCALITY-OPTIMAL, and (iv) HYBRID

We compared our algorithms against the following four “first-to-k-samples”
baselines. BITMAP-SCAN and DISK-SCAN are representative of how cur-
rent databases implement the LIMIT clause.
• BITMAP-SCAN: Assuming we have bitmaps for every predicate, we

use bitwise AND and OR operations to construct a resultant bitmap
corresponding to the valid records. We then retrieve the first k records
whose bits are set in this bitmap.

• LOSSY-BITMAP [62]: LOSSY-BITMAP is a variant of bitmap indexes
where a bit is set for each block instead of each record. For each at-
tribute value, a set bit for a block indicates that at least one record in that
block has that attribute value. During data retrieval, we perform bitwise
AND or OR operations and on these bitmaps then fetch k records from
the first few blocks which their bit set. Note that this is equivalent to a
DENSITYMAP which rounds its densities up to 1 if it is > 0.

• EWAH: This baseline is identical to BITMAP-SCAN, except the bitmaps
are compressed using the Enhanced Word-Aligned Hybrid (EWAH) tech-
nique [40] implemented using [3]

• DISK-SCAN: Without using any index structures, we continuously scan
the data on disk until we retrieve k valid records.
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Figure 4: Query runtimes for the synthetic workload on a HDD.

For our experiments on aggregate estimation, we compared our TWO-PHASE
sampling algorithms against the baseline BITMAP-RANDOM, which is sim-
ilar to BITMAP-SCAN, except that it selects k random records among all
the valid records. We describe our setup for the join any-k experiments in
Section 9.7.
Setup: All experiments were conducted on a 64-bit Linux server with 8
3.40GHz Intel Xeon E3-1240 4-core processors and 8GB of 1600 MHz
DDR3 main memory. We tested our algorithms with a 7200rpm 1TB HDD
and a 350GB SSD. For each experimental setting, we ran 5 trials (30 tri-
als for the random sampling experiments) for each query on each dataset.
In every trial, we measured the end-to-end runtime, the CPU time, the I/O
time, and the memory consumption. Before each trial, we dropped the op-
erating system page cache and filled it with dummy blocks to ensure the
algorithms did not leverage any hidden benefits from the page cache. To
minimize experimental variance, we discarded the trials with the maximum
and minimum runtime and reported the average of the remaining. Finally,
after empirically testing a few different block sizes, we found 256KB to be
a good default block size for our datasets: the block size does not signifi-
cantly impact the relative performance of the algorithms.

9.2 Query Execution Time
Summary: In the synthetic datasets on a HDD, our HYBRID
any-k sampling algorithm was on average 13× faster than the
baselines. For the real datasets, HYBRID performed at least as
well as the baselines for every query, and on average was 4×
and 9× faster for queries on HDDs and SSDs respectively.

Synthetic Experiments on a HDD. Figure 4 presents the runtimes for HY-
BRID, DENSITY-OPTIMAL, LOCALITY-OPTIMAL, and the four baselines
for varying sampling rates. (We will evaluate IO-OPTIMAL later on.) Sam-
pling rate is defined to be the ratio of k divided by the number of valid
records. Since the queries can have a wide variety in the number of valid
records, we decided to plot the impact on varying sampling rate rather than
k. (Results for varying k are similar.) The bars in the figure above repre-
sent the average runtimes for five sampling rates over 10 synthetic datasets.
Note that the figure is in log-scale.

Regardless of the sampling rate, DENSITY-OPTIMAL, HYBRID, and LOCALITY-
OPTIMAL significantly outperformed BITMAP-SCAN, LOSSY-BITMAP, EWAH,
and DISK-SCAN, with speedups of an order of magnitude. For exam-
ple, for a sampling rate of 1%, DENSITY-OPTIMAL, LOCALITY-OPTIMAL,
and HYBRID took 74ms, 45ms, and 58ms on average respectively, while
BITMAP-SCAN, LOSSY-BITMAP, EWAH, and DISK-SCAN took 647ms,
624ms, 662ms and 630ms on average respectively. Thus, our any-k algo-
rithms are more effective at identifying the right sequence of blocks that
contain valid records than the baselines which do not optimize for any-k—
the baselines are subject to the vicissitudes of random chance: if there are
large number of valid records early on, then they will do well, and not oth-
erwise. This is despite the fact that BITMAP-SCAN and EWAH store more
fine-grained information than our algorithms, and are therefore able to ef-
fectively skip over blocks without valid records.

There was no consistent winner between DENSITY-OPTIMAL and LOCALITY-
OPTIMAL across sampling rates and queries, but HYBRID always selected
the faster algorithm from the two and thus had an average speedup of 13×
over the baselines. Despite that, HYBRID’s performance on lower sampling
rates (0.1%, 1%) is a bit worse than DENSITY-OPTIMAL and LOCALITY-
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Figure 5: Query runtimes for airline workload on a HDD.
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Figure 6: Query runtimes for taxi workload on a HDD.

OPTIMAL, since it has to run both algorithms and pick the better one:
but this difference in performance is small—around 10ms. From 5% on-
wards, HYBRID’s performance is clearly better than DENSITY-OPTIMAL
and LOCALITY-OPTIMAL, since the increase in computation time is dwarfed
by the improvement in I/O time.

Real Data Experiments on a HDD. Figures 5 and 6 show the runtimes
of our algorithms over 5 diverse queries for the airline and taxi workloads
respectively. For each query and sampling rate, we normalized the runtime
of each algorithm by the largest runtime across all algorithms, while also
reporting actual runtime (in ms) taken by HYBRID and the maximum run-
time. We omitted DISK-SCAN since DISK-SCAN was found to be have the
worst runtime in the previous experiment, and similarly performs poorly
here. For the real workloads, we noticed that the runtimes of the queries
were much more varied, so we report the average runtime for each query
separately.

For the airline workload, we noticed that our any-k algorithms consis-
tently outperformed the bitmap-based baselines: DENSITY-OPTIMAL had a
speedup of up to 8 compared to BITMAP-SCAN and EWAH, while LOCALITY-
OPTIMAL had a speedup of up to 7×. Across all queries, when sampling
rate equals 1%, DENSITY-OPTIMAL and LOCALITY-OPTIMAL were on av-
erage 3× and 5× faster than BITMAP-SCAN and EWAH, despite having a
much smaller memory footprint (Section 9.3). For example for Q3, which
had two predicates on month and origin airport, the block with the highest
density contained 1% samples already. Moreover, since the airline dataset is
naturally sorted on time attributes (e.g., year, month), the valid tuples were
more likely to clustered in a few number of blocks. Therefore, compared
with LOCALITY-OPTIMAL, DENSITY-OPTIMAL fetched up to 10% less
blocks, resulting in less query execution time than LOCALITY-OPTIMAL
in all of cases. For the small additional cost of estimating the sequence of
blocks for both LOCALITY-OPTIMAL and DENSITY-OPTIMAL, HYBRID
ends up always selecting the faster algorithm in both this and the taxi work-
load, with an average speedup of 4×. For example, for Q4 with 1% sam-
pling rate HYBRID’s time is closer to DENSITY-OPTIMAL, and half of that
of LOCALITY-OPTIMAL.

We noticed a different (and somewhat surprising) trend for the taxi work-
load. Here, HYBRID continued to do well, and much better than the worst
algorithm on every setting, with an average speedup of 4× compared to the
baselines. Similarly, LOCALITY-OPTIMAL performed similar or better than
the baselines for every experiment. However, on multiple occasions, we
found that DENSITY-OPTIMAL was slower than the baselines, and was the

worst algorithm, e.g., in Q3 and Q5. Upon closer examination, we found
that DENSITY-OPTIMAL did in fact retrieve the fewest number of blocks
for every query. However, the taxi dataset was much larger than the air-
line dataset, so the blocks were more spread out, and the time to seek from
block to block went up significantly. As a result, we found the locality-
favoring LOCALITY-OPTIMAL to perform better on a HDD where seeks
were expensive. To further exacerbate the issue, we found that the taxi
workload also had a much more uniform distribution of tuples; the tuples
that satisfied query predicates (which were not based on taxi type) were
spread fairly uniformly across the dataset. In some sense, this made the
dataset “adversarial” for density-based schemes. In other words, it is hard
to conclude either DENSITY-OPTIMAL or LOCALITY-OPTIMAL is better
than another, given their performance depends on the distribution of valid
tuples of a given ad-hoc query—and it is therefore safer to use HYBRID to
pick between the two.
Real Data Experiments on a SSD. We also ran the same workload on
SSD; SSDs have random I/O performance that is comparable to sequential
I/O performance. The results are depicted in Figures 7 and 8. We omit HY-
BRID, since HYBRID always selects DENSITY-OPTIMAL over LOCALITY-
OPTIMAL due to the fact that DENSITY-OPTIMAL fetches the smallest
number of blocks. Overall, the performance of DENSITY-OPTIMAL is
much faster than the bitmap-based baselines, with average speedups of 14×
and 6× in the airline and taxi workload respectively. There were two ex-
ceptions: Q1 (10%) in airline and Q3 in taxi, where the total number of
blocks fetched by DENSITY-OPTIMAL, BITMAP-SCAN, LOSSY-BITMAP,
and EWAH were similar. In this uncommon situation, even though DENSITY-
OPTIMAL has the lowest I/O time, the CPU cost of checking for valid
records in each block was slightly higher, thus its runtime was a little higher
than BITMAP-SCAN and EWAH.

9.3 Memory Consumption
Summary: DENSITYMAPs consumed on average 48× less
memory than the regular bitmaps and 23× less memory than
EWAH-compressed bitmaps.

Table 2 reports the amount of memory used by DENSITYMAPs compared
to the other three bitmap baselines. We observed that DENSITYMAPs were
very lightweight and consumed around 51×, 47×, and 47× less memory
than uncompressed bitmaps respectively in the three datasets. Even with
EWAH-compression, we observed an almost 49× reduction in size for the

10



Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5
0

20

40

60

80

100

No
rm

al
ize

d 
Pe

rfo
rm

an
ce

1 1 1
30 17

4

3

17
459 277

8429 41 41 36259 197 104 2795 1989

Sampling Rate: 1% Sampling Rate: 10%

Density-Optimal Locality-Optimal Bitmap-Scan EWAH Lossy-Bitmap

Figure 7: Query runtimes for airline workload on a SSD.
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Figure 8: Query runtimes for taxi workload on a SSD.

taxi dataset for DENSITYMAPs relative to EWAH. In the airline dataset,
since the selectivity of each attribute value is low, EWAH compressed the
bitmaps much better than in the other two datasets. Still, EWAH consumed
3× more memory than DENSITYMAP. Lastly, since LOSSY-BITMAP re-
quires only one bit per block while DENSITYMAP is represented as a 64-
bits double per block respectively, LOSSY-BITMAP unsurprisingly con-
sumed less memory than DENSITYMAP. However, as we showed in Sec-
tion 9.2, the smaller memory consumption incurred a large cost in query
latency due to the large number of false positives (e.g., Q3 with sampling
rate 10% in Figure5); especially when the number of predicates is large
and exhibit complex correlations. In comparison, the DENSITYMAP-based
any-k algorithms were orders of magnitude faster than the baselines, while
still maintaining a modest memory footprint (∼ 0.1% of original dataset).

9.4 IO-OPTIMAL Performance
Summary: IO-OPTIMAL had up to 3.9× faster I/O time than
HYBRID and the best I/O performance among all the algo-
rithms described above. However, its large computational cost
made it impractical for real datasets.

For the evaluation of IO-OPTIMAL, we used a smaller synthetic dataset of 1
million records and a block size of 4KB, and conducted the evaluation on a
HDD. We compared its overall end-to-end runtime, CPU time, and I/O time
with every other algorithm, and found that it consistently had the best I/O
times. However, we found that computational cost of dynamic program-
ming in IO-OPTIMAL outweighed any benefits from the shorter I/O time.
Consequently, we found IO-OPTIMAL to be impractical for larger datasets.
Figure 9 shows both the overall times and I/O times for IO-OPTIMAL and
HYBRID for varying sampling rates.

9.5 Time vs Error Analysis
Summary: Compared to random sampling using bitmap in-
dexes, our TWO-PHASE sampling schemes that mix samples
from any-k sampling algorithms with a small percentage of ran-
dom cluster samples attained the same error rate in much less
time.

Using the TWO-PHASE sampling techniques in Section 6, we can obtain es-
timates of aggregate values on data; here we experiment with α = 0%,10%,30%
random samples, and use the DENSITY-OPTIMAL algorithm, since it ended
up performing the most consistently well across queries and workloads,
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Figure 9: Overall and I/O time for IO-OPTIMAL and HYBRID.

for SSDs and HDDs. We compared these results with pure random sam-
pling (BITMAP-RANDOM) using bitmaps on a HDD. We used the same
set of queries as in Section 9.2. For each query, we varied the sampling
rate and measured the runtime and the empirical error of the estimated ag-
gregate with respect to the true average value. Figure 10 depicts the aver-
age results for both the Horvitz-Thompson estimator and the ratio estima-
tor. In log scale. We’ll start with the taxi dataset and the ratio estimator.
Figure 10a shows that if all the sampling schemes are allowed to run for
500ms (commonly regarded as the threshold for interactivity), DENSITY-
OPTIMAL, TWO-PHASE sampling with α = 0.1, TWO-PHASE sampling
with α = 0.3, and BITMAP-RANDOM have average empirical error rates
of 29.64%, 4.83%, 3.66% and 19.64%, respectively; the corresponding
number of the samples retrieved are 11102, 7977, 5684, 35 respectively.
Thus, the TWO-PHASE sampling schemes are able to effectively correct
the bias in DENSITY-OPTIMAL, while still retrieving a comparable amount
of samples. Furthermore, note that BITMAP-RANDOM suffers from the
same problem as BITMAP-SCAN in large memory consumption. In con-
trast, even though DENSITY-OPTIMAL was not the fastest algorithm in the
taxi workload, our TWO-PHASE sampling algorithms cluster sample at the
block level and only need access to the much more compressed DENSI-
TYMAPs.

The behavior on the airline workload is somewhat different: here we find
that DENSITY-OPTIMAL performs better than the TWO-PHASE sampling

11



Dataset Disk Usage # Tuples Cardinality Bitmap EWAH LossyBitmap DensityMap
Synthetic 7.5 GB 100M 16 190.73MB 182.74MB 0.06MB 3.73MB
Taxi 21 GB 253M 64 1936.99MB 663.63MB 0.65MB 41.63MB
Airline 11GB 123M 805 11852.33MB 744.05MB 3.98MB 254.72MB

Table 2: Memory consumption of index structures.

102 103 104 105

Time (ms)

0

10

20

30

40

50

Er
ro

r 
(%

)

Density-Optimal
Two-Phase (  = 0.1)
Two-Phase (  = 0.3)
Bitmap-Random

(a) NYC-Taxi - Ratio Estimator

102 103 104 105

Time (ms)

0

10

20

30

40

50

Er
ro

r 
(%

)

Density-Optimal
Two-Phase (  = 0.1)
Two-Phase (  = 0.3)
Bitmap-Random

(b) Airline - Ratio Estimator

102 103 104 105

Time (ms)

0

10

20

30

40

50

Er
ro

r 
(%

)

Density-Optimal
Two-Phase (  = 0.1)
Two-Phase (  = 0.3)
Bitmap-Random

(c) NYC-Taxi - HT Estimator

102 103 104 105

Time (ms)

0

10

20

30

40

50

Er
ro

r 
(%

)

Density-Optimal
Two-Phase (  = 0.1)
Two-Phase (  = 0.3)
Bitmap-Random

(d) Airline - HT Estimator
Figure 10: Time vs empirical error.

scheme with the ratio estimator for the initial period until about 100ms, after
which the TWO-PHASE sampling schemes perform better than DENSITY-
OPTIMAL and BITMAP-SCAN. We found this behavior repeated across
other queries and trials: DENSITY-OPTIMAL sometimes ends up having
very low error (like in Figure 10b), and sometimes fairly high error (like in
Figure 10a), but the TWO-PHASE sampling schemes consistently achieve
low error relative to DENSITY-OPTIMAL. This is because DENSITY-OPTIMAL’s
accuracy is highly dependent on the correlation between the data layout and
the attribute of interest, and can sometimes lead to highly biased results. At
the same time, the TWO-PHASE sampling schemes return much more sam-
ples and much more accurate estimates than BITMAP-RANDOM, effectively
supporting browsing and sampling at the same time.

Between the Horvitz-Thompson estimator and the ratio estimator, the
ratio estimator often had higher accuracies. As explained in Section 6, the
ratio estimator works quite well in situations where aggregation estimate is
not correlated with the block densities. We found this to be the case for both
the airline and taxi workloads, so the ratio estimator helped for both these
workloads.

9.6 Effect of Parameters
To explore the properties of our any-k algorithms, we varied various

parameters and noted their effect on overall runtimes for synthetic work-
loads. Varied parameters included: (i) data size, (ii) number of predicates,
(iii) density, (iv) block size, and (v) granularity.
Data Size: We varied the synthetic dataset size from 1 million to 1 billion,
but we found that the overall runtimes of our any-k algorithms remained
relatively the same. Our algorithms return only a fixed k number of samples
and explicitly avoid reading the entire dataset, so it makes sense that the
runtimes stay consistent even when the data size increases.
Number of Predicates: As we increased the number of predicates in a
query, we saw that overall runtimes increase as well. Since our predi-
cates were combined using ANDs, an increase in the number of predi-
cates meant a decrease in the number of valid records per block. Therefore,
both DENSITY-OPTIMAL and LOCALITY-OPTIMAL needed to fetch more
blocks to retrieve the same number of samples, and this caused an increase
in the overall runtime.
Density: As we increased the overall density of valid records in the dataset,
the runtimes for our any-k algorithms got faster. As the overall density
increased, the average density per block also increased, so our any-k algo-
rithms could retrieve fewer blocks to achieve the same number of k samples.
Block Size: We tried varying the block sizes of our datasets from 4KB, to
256KB, to 1MB, to 2MB. We found that as we decreased the block sizes,
the runtimes for DENSITY-OPTIMAL increased drastically because smaller
block sizes meant that more random I/O was being done. However, we did
not see any definite correlation as we increased the block size. Although
larger block sizes do bias the algorithms toward more locality, they also
mean density information is collected at a coarser granularity. We suspect
that this tradeoff prevented us from seeing any improvements in perfor-
mance with increased block size.

9.7 Key-Foreign Key Join Performance
Summary: Our iterative join any-k algorithm has an average
speedup of 3× compared to existing baselines not optimized
for any-k.

We now evaluate the extension of our any-k algorithms to key-foreign
key joins from Section 7. We compare the performance of our join algo-
rithm with two baselines: (1) SHARED-SCAN: a single scan of the foreign
key table, shared across different join attribute values, with no indexes and
(2) BITMAP-COMBINED: a single scan of the foreign key table, shared
across different join attribute values, with bitmap indexes to skip to the
next valid record which can serve as a sample. In both cases, the algo-
rithms terminate as soon as k samples for each join value are found, and
a hash join is used to combine the foreign key record with the primary
key record, with the hash table constructed on the primary key table. In
BITMAP-COMBINED, bitmaps for different join values were first combined
using OR, then once a join attribute value had reached k samples, its bitmap
is subtracted from the combined bitmap.

For our join any-k algorithm, we ran the iterative algorithm presented
in Section 7 and used DENSITY-OPTIMAL as our any-k algorithm in each
iteration. We varied the number of blocks retrieved per iteration (Ψ) before
the updates to the combined densities, and evaluated its impact on the over-
all runtime. As with SHARED-SCAN and BITMAP-COMBINED, we used a
hash join with the hash table constructed on the primary key table.

All experiments were run with a synthetic dataset using a SSD drive. The
synthetic dataset had two tables: one for the primary key and one for the
foreign key. All attributes for both tables were of int type. The primary key
table’s ith row had i as the its unique primary key value, and the foreign key
table’s foreign key attribute values were generated using a Zipf distribution.
Note that this means there were some foreign keys which did not match with
any primary key. In addition, we varied the following parameters: (1) the
number of rows in the foreign key table, (2) the number of attributes in
the foreign key table, (3) the number of attributes in the primary key table,
(4) number of unique values for the join attribute in the primary key table
(and thereby the number of the rows in the primary key table), and (5) the
Zipf distribution parameter. Each experimental setup was run 5 times and
the means of these average runtimes are reported in this paper. The standard
deviation between the runtimes were less than 1% for the experiments, so
they are not reported.

Table 3 shows the overall runtimes for different sampling rates with the
following parameters: (1) 10 million rows for the foreign key table, (2) 10
foreign key key table attributes, (3) 10 primary key table attributes, (4) 10
unique join attribute values, and (5) 2 as the Zipf distribution parameter.
The lowest runtimes for each sampling rate are highlighted in bold and
the speedup relative to BITMAP-COMBINED (the better of the two base-
lines) are indicated in parentheses. As shown, our DENSITY-COMBINED
was the fastest algorithm for each sampling rate, with a 3× speedup com-
pared to BITMAP-COMBINED and an order of magnitude difference with
respect to SHARED-SCAN. This was largely due to the fact that DENSITY-
COMBINED retrieved far fewer blocks than either BITMAP-COMBINED or
SHARED-SCAN. For a sampling rate of 0.05%, DENSITY-COMBINED (Ψ=10)
only retrieved 190 blocks, while BITMAP-COMBINED retrieved 1259 and
SHARED-SCAN retrieved 1527. Since we used a SSD, this always resulted
in a lower runtime. Note that had these experiments been run on a HDD,
we would have used HYBRID as our any-k algorithm.

We found that varying Ψ had a rather minimal impact on the overall
runtime for values between a certain range (5 - 50 for this case). Out-
side of this range (e.g., Ψ = 1), Ψ had a larger impact on performance,
but the overall runtime was still lower than either BITMAP-COMBINED or
SHARED-SCAN.
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Sampling Rate SHARED-SCAN BITMAP-COMBINED DENSITY-COMBINED (Ψ=5) DENSITY-COMBINED (Ψ=10) DENSITY-COMBINED (Ψ=50)
0.1% 2465.67 215.678 67.6398 63.7114 73.7204
0.5% 2632.32 1049.92 307.534 300.023 301.193
1.0% 2761.74 1424.12 616.090 593.258 591.201

Table 3: Query runtimes (in ms) on SSD for join operations on foreign key tables with 10 million rows.

Sampling Rate SHARED-SCAN BITMAP-COMBINED DENSITY-COMBINED (Ψ=5) DENSITY-COMBINED (Ψ=10) DENSITY-COMBINED (Ψ=50)
0.1% 1266.06 110.63 33.59 32.38 68.16
0.5% 1359.80 548.88 154.34 159.45 153.65
1.0% 1418.73 737.64 308.00 299.78 307.44

Table 4: Query runtimes (in ms) on SSD for join operations on foreign key tables with 5 million rows.

Sampling Rate SHARED-SCAN BITMAP-COMBINED DENSITY-COMBINED (Ψ=5) DENSITY-COMBINED (Ψ=10) DENSITY-COMBINED (Ψ=50)
0.1% 12415.26 1114.80 417.18 347.93 314.27
0.5% 13019.96 5193.80 2068.75 1708.97 1476.64
1.0% 13651.02 7143.95 4167.87 3478.81 2971.74

Table 5: Query runtimes (in ms) on SSD for join operations on foreign key tables with 50 million rows.

Sampling Rate SHARED-SCAN BITMAP-COMBINED DENSITY-COMBINED (Ψ=5) DENSITY-COMBINED (Ψ=10) DENSITY-COMBINED (Ψ=50)
0.1% 1930.30 134.84 47.62 46.94 95.57
0.5% 2069.74 628.99 223.42 228.43 225.59
1.0% 2197.38 904.28 453.56 452.34 447.00

Table 6: Query runtimes (in ms) on SSD for join operations on a foreign key table with 5 attributes.

Sampling Rate SHARED-SCAN BITMAP-COMBINED DENSITY-COMBINED (Ψ=5) DENSITY-COMBINED (Ψ=10) DENSITY-COMBINED (Ψ=50)
0.1% 7223.28 926.99 278.35 217.47 165.21
0.5% 7348.53 4460.22 1422.41 1108.15 886.90
1.0% 7573.63 5758.62 2859.31 2220.21 1770.48

Table 7: Query runtimes (in ms) on SSD for join operations on a foreign key table with 50 attributes.

Sampling Rate SHARED-SCAN BITMAP-COMBINED DENSITY-COMBINED (Ψ=5) DENSITY-COMBINED (Ψ=10) DENSITY-COMBINED (Ψ=50)
0.1% 2220.28 226.89 62.43 65.48 74.75
0.5% 2389.59 1110.59 312.64 303.34 304.42
1.0% 2509.94 1478.30 625.06 605.06 606.28

Table 8: Query runtimes (in ms) on SSD for join operations on a primary key table with 5 attributes.

Sampling Rate SHARED-SCAN BITMAP-COMBINED DENSITY-COMBINED (Ψ=5) DENSITY-COMBINED (Ψ=10) DENSITY-COMBINED (Ψ=50)
0.1% 5177.96 245.09 70.56 75.44 85.31
0.5% 5453.41 1172.76 361.24 350.30 351.10
1.0% 5692.40 1618.83 722.81 696.12 698.50

Table 9: Query runtimes (in ms) on SSD for join operations on a primary key table with 50 attributes.

Sampling Rate SHARED-SCAN BITMAP-COMBINED DENSITY-COMBINED (Ψ=5) DENSITY-COMBINED (Ψ=10) DENSITY-COMBINED (Ψ=50)
0.1% 2528.40 68.33 60.85 58.91 68.16
0.5% 2699.45 326.55 280.79 278.06 279.73
1.0% 2843.45 651.10 558.19 547.48 559.85

Table 10: Query runtimes (in ms) on SSD for join operations on 5 unique join attribute values.

Sampling Rate SHARED-SCAN BITMAP-COMBINED DENSITY-COMBINED (Ψ=5) DENSITY-COMBINED (Ψ=10) DENSITY-COMBINED (Ψ=50)
0.1% 2445.25 1250.18 2148.35 1845.65 1603.79
0.5% 2597.23 1513.81 2304.90 2008.87 1759.71
1.0% 2757.08 1704.73 2421.01 2116.32 1873.40

Table 11: Query runtimes (in ms) on SSD for join operations on 50 unique join attribute values.

Sampling Rate SHARED-SCAN BITMAP-COMBINED DENSITY-COMBINED (Ψ=5) DENSITY-COMBINED (Ψ=10) DENSITY-COMBINED (Ψ=50)
0.1% 1527 1527 1284 1284 1284
0.5% 1527 1527 1284 1284 1284
1.0% 1527 1527 1284 1284 1284

Table 12: Number of blocks fetched for join operations on 50 unique join attribute values.

Sampling Rate SHARED-SCAN BITMAP-COMBINED DENSITY-COMBINED (Ψ=5) DENSITY-COMBINED (Ψ=10) DENSITY-COMBINED (Ψ=50)
0.1% 62154.22 142.40 56.50 54.40 78.98
0.5% 63513.28 664.69 273.63 259.14 252.80
1.0% 64099.30 1308.80 542.67 522.12 510.73

Table 13: Query runtimes (in ms) on SSD for join operations on a foreign key with Zipf distribution parameter of 1.5.

Sampling Rate SHARED-SCAN BITMAP-COMBINED DENSITY-COMBINED (Ψ=5) DENSITY-COMBINED (Ψ=10) DENSITY-COMBINED (Ψ=50)
0.1% 1673.12 1077.73 1783.76 1706.39 1647.18
0.5% 1704.48 1120.75 1823.00 1742.84 1711.86
1.0% 1742.57 1186.66 1841.09 1734.92 1721.47

Table 14: Query runtimes (in ms) on SSD for join operations on a foreign key with Zipf distribution parameter of 5.

Sampling Rate SHARED-SCAN BITMAP-COMBINED DENSITY-COMBINED (Ψ=5) DENSITY-COMBINED (Ψ=10) DENSITY-COMBINED (Ψ=50)
0.1% 1526 1526 1525 1525 1525
0.5% 1527 1527 1525 1525 1525
1.0% 1527 1527 1525 1525 1525

Table 15: Number of blocks fetched for join operations on a foreign key with Zipf distribution parameter of 5.
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With the experimental setup used for Table 3, we varied each of the 5
parameters mentioned before one at a time to see their effect on overall
runtime performance. Other than the varied parameter for each experiment,
the other parameters were set to be the same as those used in the experiment
for Table 3.

(1) Rows in Foreign Key Table. First, we wanted to see whether our it-
erative join any-k algorithm could scale to different dataset sizes. Since,
the size of the primary key table is fixed to be the number of unique join at-
tribute values, we first focused on varying the number of rows in the foreign
key table. Tables 4 and 5 show the results for 5 and 50 million rows in the
foreign key table respectively. As we can see DENSITY-COMBINED still
provided a speedup of 2-3× over BITMAP-COMBINED, suggesting that our
join any-k algorithm can scale. The reasons for the speedup were the same
as for Table 3; much fewer blocks were retrieved by DENSITY-COMBINED
than BITMAP-COMBINED.

(2) Number of Attributes in Foreign Key Table. Given the row-oriented
layout of our data, a change in the number of attributes in the foreign key
table meant a change in the number of records per block for the foreign
table. This parameter allowed us to observe how DENSITY-COMBINED
would adapt to different numbers of records in the blocks. Furthermore,
the number of attributes also affected the size of the dataset, so this ex-
periment served as an additional check on how well DENSITY-COMBINED
scaled with size. Tables 6 and 7 show the results for 5 and 50 attributes
in the foreign key table respectively. DENSITY-COMBINED still remained
faster than either SHARED-SCAN or BITMAP-COMBINED, and we saw
that as the number of attributes increased, the speedup became more pro-
nounced as well. This was due to DENSITY-COMBINED being more selec-
tive with the blocks it chose to retrieve. When there were fewer records per
block, the choice of the blocks had a large impact on the number of blocks
fetched, making DENSITY-COMBINED more suited for this case than either
BITMAP-COMBINED or SHARED-SCAN.

(3) Number of Attributes in Primary Key Table. We hypothesized that
varying the number of attributes in the primary key table would have min-
imal effect on the overall runtime. The only impact this variable should
have had was on the time it took to copy the record in the primary key ta-
ble for the output. Tables 8 and 9 show the results for 5 and 50 attributes
in the primary key table respectively. As we expected, this parameter did
have a minimal impact on the overall performance of the algorithms, with
runtimes extremely similar to Table 3. We believe given the magnitude of
the difference, the runtime discrepancies between Table 3 and 8 were due
to experimental noise.

(4) Number of Unique Join Attribute Values. We wanted to see how
DENSITY-COMBINED would perform with different number of join values,
so we altered the number the number of unique join attribute values, and
thereby also increased the number of rows in the primary key table. Ta-
ble 10 and 11 show the results for 5 and 50 unique join attribute values
respectively. As expected, DENSITY-COMBINED outperformed BITMAP-
COMBINED for 5 unique join values. Interestingly, BITMAP-COMBINED
was more performant than DENSITY-COMBINED for 50 unique join values.
Upon closer examination, we found that although BITMAP-COMBINED was
faster than DENSITY-COMBINED, DENSITY-COMBINED was still retriev-
ing fewer blocks as shown by Table 12. However, compared to the other
experiments, DENSITY-COMBINED was returning a larger ratio of blocks
with respect to BITMAP-COMBINED. Due to the Zipf distribution nature of
the foreign key values, records with a foreign key value greater than 10 were
scarce, and more spread out among the blocks. This meant that a greater
number of blocks would have to be returned to satisfy the users’ join any-k
query (regardless of any algorithm used). Since we ran the all these exper-
iments with DENSITY-OPTIMAL, we believe that DENSITY-COMBINED’s
lack of awareness caused a greater overall runtime.

(5) Zipf Distribution Parameter. The final variable of interest was the Zipf
distribution parameter used to generate the attribute values for the foreign
key. Table 13 and 14 show the results for a Zipf distribution parameter of 1.5
and 5 respectively. DENSITY-COMBINED outperformed SHARED-SCAN
and BITMAP-COMBINED as usual for a Zipf distribution parameter of 1.5,
but BITMAP-COMBINED once again outperformed DENSITY-COMBINED
for a Zipf distribution parameter of 5. A greater Zipf distribution parameter
forced the foreign keys to be more heavily concentrated around the lower
numbers, thus causing the higher numbers to become more scarce. Thus, a
similar behavior to the experiment with 50 unique join attribute values was
exhibited. We can see this from Table 15, in which DENSITY-COMBINED
still retrieved the “fewest” number of blocks, but it was only 1 or 2 less

than BITMAP-COMBINED and SHARED-SCAN. When retrieving around
the same number of blocks, the locality-unaware DENSITY-COMBINED ex-
pectedly performed worse than BITMAP-COMBINED.

Overall. These experiments suggest that the iterative join any-k algorithm
is most effective when a smaller number of blocks needs to be fetched.
Luckily, most browsing cases fit into such a category (e.g., a user is not
likely to want 10 samples for each of the 50 unique join values), so NEEDLE-
TAIL ends up being a good fit for the browsing use case. Nevertheless, we
are still in the midst of trying to make DENSITY-COMBINED more aware
of locality so that it can handle any situation.

10. RELATED WORK
Prior work related to NEEDLETAIL can be divided into the following

categories:

Data Skipping. Intelligently identifying and skipping irrelevant blocks can
significantly reduce system I/O time. For example, OLAP systems use in-
dexes that track the minimum and maximum value in each block to skip
blocks that do not satisfy queries [48, 51, 37]. Sun et al. [54] employ
a workload-aware version of this technique that, given common filters in
a past workload, partitions data into multiple blocks and skips irrelevant
blocks at runtime. NEEDLETAIL also skips blocks, but DENSITYMAPs re-
quire no workload to set up and allow us to quickly identify which blocks
contain the most records, allowing us to develop our any-k techniques.

Bitmap Indexing. Bitmap indexes [18] improve response-time for queries
with multiple boolean predicates by composing bitmaps to filter out rows
that do not satisfy the query conditions. The key limitation of bitmap in-
dexes is that their size increases significantly as the cardinality of attributes
grows. There exist various techniques to reduce the size of bitmaps, in-
cluding compression [35, 63, 13, 49], encoding [17, 66] and binning [53,
68]. For the specific problem of any-k sampling, DENSITYMAPs provide
a coarser indexing structure that is smaller, faster and sufficient to identify
dense blocks without involving compression or decompression.

Block Level Indexing. This group of indexing techniques, including LOSSY-
BITMAP [62], SMA [43] and variants of SMA [38, 15, 24], were devel-
oped to track aggregate attribute information at the block level. These tech-
niques have been used to aid query processing in database systems such
as Vertica [37], Netezza [4], and MonetDB/X100 [15]. By tracking aggre-
gate information, these techniques are able to consume less memory than
finer-grained index structures such as regular record-level bitmap indexes.
While our DENSITYMAP also lies in the same family as these aggregate
block-based techniques, DENSITYMAPs are significantly better-suited for
the any-k problem. The densities in DENSITYMAPs allow our any-k al-
gorithms to prioritize blocks which are more likely to have valid records,
thereby significantly reducing the number of retrieved blocks and overall
I/O time. In Section 9, we experimentally demonstrate that our any-k al-
gorithms using DENSITYMAPs outperforms LOSSY-BITMAP by up to 5×
and 6× in HDDs and SSDs respectively.

Approximate Query Processing. In the past decade, a number of approx-
imate query processing techniques [26, 27, 34] and systems [10, 9] have
emerged that allow users to trade off query accuracy for interactive response
times, by employing random sampling. These techniques fall into one of
two categories: either they pre-materialize specific samples or sketches of
data, tailored to the queries [10, 14, 19, 33, 8], or perform some form of
online sampling [34, 30, 28, 61]. The former category does not apply to
exploratory data analysis, since a workload is assumed. The latter category
use techniques that are either similar to BITMAP-RANDOM or DISK-SCAN
in order to achieve adequate randomization. In contrast, NEEDLETAIL pri-
marily focuses on any-k sampling, possibly extended with random sam-
pling. This allows NEEDLETAIL to avoid accessing data in random order,
avoiding expensive up-front randomization or inefficient random access to
data at runtime.

Random Sampling in Relational Databases. Olken and Rotem [45] ex-
amine data structures, algorithms and their performance for simple ran-
dom sampling from a variety of relational operators. Various database sys-
tems [2, 6] extend SQL with functions that lets users randomly select a
subset of rows from the query results. However, since these techniques are
based on random sampling, they incur high latency even for retrieving a
small (1%) amount of samples. In NEEDLETAIL, our TWO-PHASE sam-
pling technique returns much larger samples than random sampling, but in
much less time and with comparable accuracy.
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Output Rate Maximization. A related line of work is that of generating
join results early, trying to increase the rate of output of tuples [55, 58, 57,
16, 60]. In particular, the papers aim to identify the tuples that are most
beneficial to preferentially cache in memory so as to maintain a high output
rate, trading off early join results and end-to-end execution time. These
papers do not formally articulate or optimize the any-k problem. Moreover,
our approach is instead to preferentially read certain portions of the data to
solve the any-k problem; thus our approaches are complementary.

In particular, RPJ [55] formulates the output rate based on the data dis-
tribution and develops an optimal flush policy when input exceeds memory
budget. Instead, RRPJ [58] directly observes the output rate and flushes
data according to result statistics. Wee et al., [57] share similar ideas, but
uses a spatial join instead of equi-join. Mihaela et al., [16] propose a flush
policy based on the range of values of the join attribute and the join result
size. Furthermore, Stratis et al., [60] consider maximizing output rate for
multi-way join and propose a multi-way join operator called MJoin as an
alternative to a tree of binary joins. On the other hand, Lawrence [39] pro-
poses an early hash join algorithm to trade-off between early join results and

end-to-end join execution time. The basic idea is through changing reading
strategy from the two join tables, e.g., alternative reading or 5:1 ratio from
table A and table B. Unlike [55, 58, 60, 39], PR-join [20] focuses on gen-
erating early representative join results with statistical guarantees. PR-join
improves the blocked ripple join by adaptively changing the ripple width
and achieves a higher early join result rate.

11. CONCLUSIONS
We presented NEEDLETAIL, a data exploration engine that supports LIMIT

queries by retrieving any-k valid records for arbitrary queries as quickly as
possible. We proposed DENSITYMAPs, a lightweight index structure, as
well as four any-k sampling algorithms built on top of simple cost models.
Our experimental evaluations demonstrated that NEEDLETAIL is effectively
able to trade-off density and locality to speed up query runtimes up on aver-
age by 13× on synthetic datasets and 4× and 9× on real datasets for HDDs
and SSDs respectively.
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APPENDIX
A. OPTIMALITY AND COMPLEXITY
A.1 Optimality Proof for IO-OPTIMAL

PROOF. We demonstrate here that Opt(k,λ ) in Algorithm 3 gives the
optimal I/O cost. Recall that C(s, i) refers to the minimal cost to retrieve s
estimated valid records when block i is amongst the blocks fetched. Our first
goal is to verify that C(s, i) satisfies the recursive equations. Let Ω be the set
of selected blocks for C(s, i) and j be the block ID just before i in Ω. Then
C(s, i) will select the same set of blocks from the first j blocks as that for
C(s− si, j), i.e., Ω\{i, j}. Otherwise, we can replace one by another to get
lower I/O cost. Thus, we have C(s, i) = mini−1

j=1(C(s− si, j)+RandIO( j, i))
by considering all j. Furthermore, since RandIO( j, i) is a constant when
j− i > t and min j

k=1 C(s− si,k) = Opt(s− si, j) by considering all the last
picked block k, we have mini−t−1

j=1 (C(s− si, j)+RandIO( j, i)) = Opt(s−
si, i− t − 1)+ constant. Thus, the formula can be rewritten as that in the
beginning of Section 5.2.

First, we observe that C(s, i) has some prefix-optimal property. Let Ω

be the set of selected blocks for C(s, i) and j be the block ID just before
i in Ω. Then C(s, i) will select the same set of blocks from the first j
blocks as that for C(s− si, j), i.e.,Ω \ {i, j}. Otherwise, we can replace
one by another to get lower I/O cost. Thus, we have C(s, i) = mini−1

j=1(C(s−
si, j)+RandIO( j, i)) by considering all j. Furthermore, since RandIO( j, i)

is a constant when j− i > t and min j
k=1 C(s− si,k) = Opt(s− si, j) by

considering all the last picked block k, we have mini−t−1
j=1 (C(s− si, j) +

RandIO( j, i)) = Opt(s− si, i− t − 1) + constant. Thus, the formula can
be rewritten as that in the beginning of Section 5.2.

Next, we obtain Opt(s, i) by considering two different cases: (a) block
i is amongst the blocks fetched; (b) block i is not amongst the blocks
fetched. In the first case, Opt(s, i) is exactly C(s, i), while in the second
case, Opt(s, i) is exactly the same as Opt(s, i−1). Hence we have the for-
mula stated in the beginning of Section 5.2. In all, our proposed DP is
correct and Opt(k,λ ) in Algorithm 3 gives the optimal I/O cost.

A.2 Complexity Analysis
We analyze the complexity for three of our any-k algorithms: DENSITY-

OPTIMAL, LOCALITY-OPTIMAL, and IO-OPTIMAL. Naturally, the com-
plexity of HYBRID is the maximum of the DENSITY-OPTIMAL and LOCALITY-
OPTIMAL.

A.2.1 Complexity for DENSITY-OPTIMAL
In Algorithm 1, the set M contains the set of blocks that have already

been encountered by the algorithm, but not yet selected to be part of the out-
put. We maintain M as a sorted set in the descending order of their densities.
Therefore, the complexity of insertion (Line 8) is O(log(| M |)) while the
complexity of retrieval (Line 10 and 18) and deletion (Line 14) is constant.
In the worst case, the computational complexity of DENSITY-OPTIMAL is
O(λγ + λ log(λ )), where λ is the number of blocks that table T is allo-
cated on disk. However, in practice, the number of predicates of a query is
generally less than 10, while datasets are usually allocated on thousands of
blocks, indicating we can treat γ as roughly constant. Consequently, in gen-
eral, the complexity of DENSITY-OPTIMAL is O(λ log(λ )). Additionally,
given that our system focuses on the cases of browsing k results where k is
usually much smaller than the total number of query records, DENSITY-
OPTIMAL usually terminates after looking into only a small number of
blocks instead of λ blocks, which further reduces the computation time
in real world scenarios.

A.2.2 Complexity for LOCALITY-OPTIMAL
The computational complexity of Algorithm 2 consists of two parts; cal-

culating M and performing two (amortized) linear scans of M: O(λγ +
2λ ) = O(λγ). Typically, γ < 10, thus the time complexity can be reduced
to O(λ ).

A.2.3 Complexity for IO-OPTIMAL
The computational complexity of IO-OPTIMAL, shown in Algorithm 3,

is O(λγ + λkt). However, we once again apply the fact that γ < 10 in
practice to reduce the time complexity to O(λkt).
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